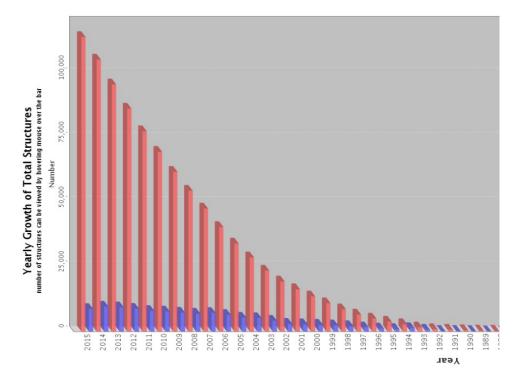
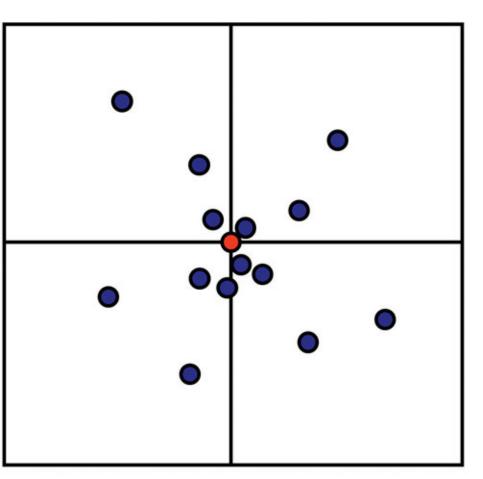
Quality indicators in Crystallography

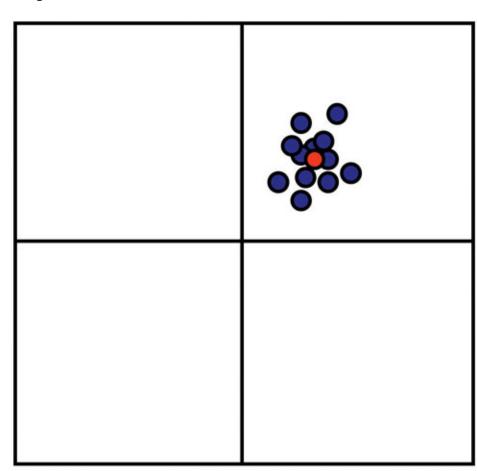

Kay Diederichs

Protein Crystallography /
Molecular Bioinformatics
University of Konstanz, Germany

Crystallography has been extremely successful

Protein Data Bank on 2016-09-21: 122.799 entries


Could it be any better?


Four examples for

- Rules that may have been useful in the past under different circumstances, but are still very commonly used today and which result in wrong decisions
- Concepts resulting from first principles that would, if applied, deliver the information to allow the correct decision

1st example: Not understanding the difference between, and the relevance of **precision** and **accuracy**

"Quality"

B. Rupp, Biomolecular Accordance Crystallography

Precision Accuracy

- how different are measurements?
- how different from the true value?

Numerical example

Repeatedly determine π =3.14159... as 3.1, 3.2, 3.0 : observations have low precision, low accuracy

Precision= normalized absolute deviation from average value= (0.04159+0+0.05841+0.14159)/(3.1+3.2+3.0) = 2.6%

R_{merge} formula!

Accuracy= normalized absolute deviation from true value: (3.14159 - 3.1)/3.14159 = 1.3%

Repeatedly determine π =3.14159... as 2.718, 2.716, 2.720 :

observations have high precision, low accuracy.

Precision= normalized absolute deviation from average value= (0.002+0+0.002)/(2.718+2.716+2.720) = 0.049%

Accuracy= normalized absolute deviation from true value= (3.14159-2.718) / 3.14159 = 13.5%

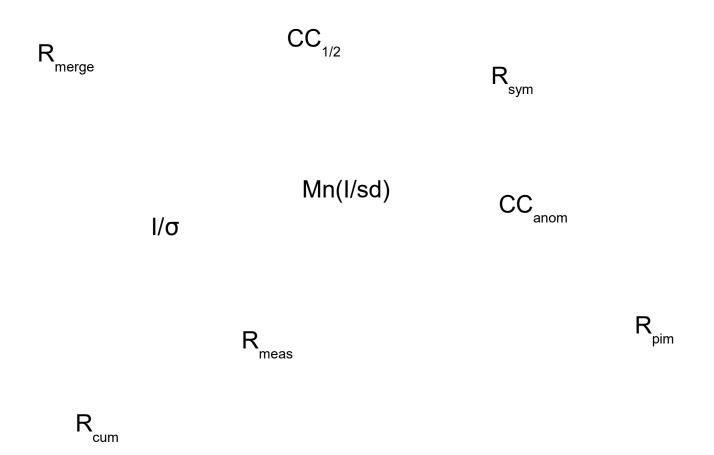
$$R_{merge} = \frac{\sum\limits_{hkl} \sum\limits_{i=1}^{n} |I_{i}(hkl) - I(hkl)|}{\sum\limits_{hkl} \sum\limits_{i=1}^{n} I_{i}(hkl)}$$

What is the "true value"?

- → if only random error exists, accuracy = precision (on average)
- → if unknown systematic error exists, true value cannot be found from the data themselves
- consequence: precision can easily be calculated, but not accuracy
- accuracy and precision differ by the unknown systematic error

All data quality indicators estimate *precision* (only), but YOU (should) want to know *accuracy*!

- →Rules: "The data processing statistics tells me (and the reviewers!) how good my data are.


 To satisfy reviewers, the indicators must be good."
- Suboptimal result: these rules encourage
 - overexposure of crystal to lower R_{merge}
 - data collection "strategy" with low multiplicity
 - data massaging: rejecting many "outliers", throwing away negative or weak data

→Concepts:

- Data processing logfiles report the *precision* of the data, *not* their accuracy.
- averaging increases accuracy unless the data repeat systematic errors
- outliers may be correctly or incorrectly identified. Rejecting too many may *increase* the precision, but *decreases* accuracy!

2nd example: confusion by multitude and properties of crystallographic indicators

Confusion – what do these mean?

Calculating the precision of unmerged (individual) observations

 $< | /\sigma > (\sigma_i \text{ from error propagation,} i=individual)$

$$R_{merge} = \frac{\sum\limits_{hkl} \sum\limits_{i=1}^{n} |I_{i}(hkl) - \overline{I}(hkl)|}{\sum\limits_{hkl} \sum\limits_{i=1}^{n} I_{i}(hkl)}$$

$$R_{meas} = \frac{\sum\limits_{hkl} \sqrt{\frac{n}{n-1}} \sum\limits_{i=1}^{n} |I_{i}(hkl) - \overline{I}(hkl)|}{\sum\limits_{hkl} \sum\limits_{i=1}^{n} I_{i}(hkl)}$$

$$R_{\text{meas}} \sim 0.8 / \langle I/\sigma_i \rangle$$

Calculating the precision of merged data

using the \sqrt{n} law of error propagation (Wikipedia "weighted arithmetic mean"):

$$R_{pim} = \frac{\sum_{hkl} \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} |I_{i}(hkl) - I(hkl)|}{\sum_{hkl} \sum_{i=1}^{n} I_{i}(hkl)}$$
 R pim ~ 0.8 / < I/ σ >

by comparing averages of two randomly selected half-datasets X,Y:

H,K,L	I _i in order of	Assignment to	Average I of
	measurement	half-dataset	XY
1,2,3	100 110 120 90 80 100	X, X, Y, X, Y, Y	100 100
1,2,4	50 60 45 60	YXYX	60 47.5
1,2,5	1000 1050 1100 1200	XYYX	1100 1075

(calculate the R-factor (D&K1997) or correlation coefficient CC_{1/2} (K&D 2012) on X, Y)

Measuring the precision of merged data with a correlation coefficient

- Correlation coefficient has clear meaning and well-known statistical properties
- Significance of its value can be assessed by Student's ttest
 - (e.g. CC>0.3 is significant at p=0.01 for n>100; CC>0.08 is significant at p=0.01 for n>1000)
- Apply this idea to crystallographic intensity data: use "random half-datasets" \rightarrow CC_{1/2} (called CC_Imean by SCALA/aimless, now CC_{1/2})
- From CC_{1/2}, we can analytically estimate CC of the merged dataset against the true (usually unmeasurable) intensities using

 $CC^* = \sqrt{\frac{2CC_{1/2}}{1 + CC_{1/2}}}$

• (Karplus and Diederichs (2012) Science 336, 1030)

- *Rule*: "the quality of the data that I use for refinement can be assessed by R_{merge}/R_{meas} . Data with $R_{merge}/R_{meas} > e.g. 60%$ are useless."
- Suboptimal result: Wrong indicator. Wrong high-resolution cutoff. Wrong data-collection strategy.

Concept: - use an indicator for the precision of the *merged* data if you are interested in the suitability of the data for MR, phasing and refinement.

- Use an indicator for the precision of *unmerged* data for special purposes like spacegroup determination, and a radiation damage estimate.

- Use
$$CC^* = \sqrt{\frac{2CC_{1/2}}{1 + CC_{1/2}}}$$
 if you want to know how high (numerically) CC_{work} ,

CC_{free} in refinement can become (i.e. how data quality limits model quality).

(This does not work with R-values because data R-values and model R-values have different definitions!)

3rd example: *improper* crystallographic reasoning

situation: data to 2.0 Å resolution

using all data: R_{work}=19%, R_{free}=24% (overall)

cut at 2.2 Å resolution: R_{work}=17%, R_{free}=23%

• **Rule**: "The lower the R-value, the better." "cutting at 2.2 Å is better because it gives lower R-values"

- (Potentially) suboptimal result: throwing away data.
- **Concept**: indicators may only be compared if they refer to the *same* reflections.

Proper crystallographic reasoning

- requires three concepts:
- 1. Better data allow to obtain a better model
- 2. A better model has a lower R_{free} , and a lower R_{free} - R_{work} gap
- 3. Comparison of model R-values is only meaningful when using the same data

Taking these together, this leads us to the *"paired refinement technique"*: compare models in terms of their R-values against the *same* data.

P.A. Karplus and K. Diederichs (2012) Linking Crystallographic Data with Model Quality. *Science* **336**, 1030-1033.

4th ex.: Resolution of the data

Rules:

- 1. Worst: cutoff based on R_{svm} (which value?)
- 2. Better: cutoff based on $<I/\sigma(I)>$ (which value?) merged data
- 3. Even better: cutoff based on $CC_{1/2}$ (which value?) merged data, no σ

Concepts:

- 1. "ideally, we would determine the point at which adding the next shell of data is not adding any statistically significant information" (P. Evans)
- 2. paired refinement method proper comparison
- 3. only a good model can extract information from weak data external
- 4. R_{work}/R_{free} of model against *noise* is ~42% (Evans&Murshudov) validation

Advice: be generous at the data processing stage, and decide only at the very end of refinement Deposit the data up to the resolution where CC_{1/2} becomes insignificant!

Resolution of the model

Rule:

the resolution of the *model* is the resolution of the data it was refined against

Concepts:

- 1. the notion "resolution of a model" is misguided it answers the wrong question!
- 2. resolution of a map (Urzhumtsev et al) is well-defined: how far are features apart that we can distinguish? depends on Wilson-B
- 3. better to ask about precision and accuracy of the model
 - precision: reproducibility of coordinates
 - accuracy: which errors are present? much more important!

Summary

- Crystallographic decisions are often based on rules of (if anything) only historical interest. These rules frequently lead to improper shortcuts being taken
- "make everything as simple as possible, but not simpler" (attributed to A. Einstein)
- Rules may be needed in expert systems; however, humans should rather learn, apply and further develop the underlying concepts
- Change the way we think and teach
- Crystallography is a Science, not just "applied technology"

Thank you for your attention!

Two recent references:

P.A. Karplus and K. Diederichs (2015) Assessing and maximizing data quality in macromolecular crystallography. *Current Opinion in Struct.Biol.* **34**, 60-68.

K. Diederichs (2015) Crystallographic data and model quality. in: Nucleic Acids Crystallography (Ed. E. Ennifar), Methods in Molecular Biology **1320**, 147-173.

(PDFs at http://cms.uni-konstanz.de/strucbio/diederichs-group/publications)