PowerPoint File available:

http://bl831.als.lbl.gov/ ~jamesh/powerpoint/ IGBMC_SvN_2016.pptx

Acknowledgements

Robert Stroud James Fraser John Spence Chris Nielsen Clemens Schulze-Briese Aina Cohen Ana Gonzalez

UCSF LBNL SLAC ALS 8.3.1 creator: Tom Alber

UC Multicampus Research Programs and Initiatives (MRPI) UCSF Program for Breakthrough Biomedical Research (PBBR) one-time NIH-DOE Inter-agency agreement (IAA) Integrated Diffraction Analysis Technologies (IDAT) Plexxikon, Inc. M D Anderson CRC

Synchrotron Radiation Structural Biology Resource (SLAC)

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

The "success rate" of structure determination

100 s/dataset 200 days/year ~150 beamlines

~26,000,000 datasets/year 9333 PDBs in 2015

"If you don't have good data, then you have no data at all."

-Sung-Hou Kim

$\int \frac{\text{signal / noise}}{\sqrt{\text{photons }?}} =$				
		none	sqrt	proportional
IMe	none	CCD Read-out	Photon counting	Detector calibration attenuation partiality Non-isomorphism Radiation damage
	1/sqrt			Beam flicker
	1/prop.			Shutter jitter Sample vibration

ŀ

"If you don't have good data, then you must learn statistics."

-James Holton

1 + 1 = 1.4

1 + 1 = 1.4

$\sigma_{\text{total}}^2 = \sigma_1^2 + \sigma_2^2$

$1^2 + 1^2 = 1.4^2$

$\sigma_{\text{total}}^2 = \sigma_1^2 + \sigma_2^2$

Adding noise $1^2 + 1^2 = 1.4^2$ $3^2 + 1^2 = 3.2^2$ $\sigma_{\text{total}}^2 = \sigma_1^2 + \sigma_2^2$

Adding noise $1^2 + 1^2 = 1.4^2$ $3^2 + 1^2 = 3.2^2$ $10^2 + 1^2 = 10.05^2$

100% SeMet incorporation

Trivial to solve

100% S - Met incorporation

Impossible to solve

correlation coefficient

correlation coefficient

MR simulation

corrupted model

The transitions are sharp!

How can we predict success/failure?

Know Thy Experiment

Basic Principles

"Hell, there are NO RULES here - we're trying to accomplish something."

Thomas A. Edison – inventor

"You've got to have an ASSAY."

Arthur Kornberg – Nobel Laureate

"Control, control, you must learn CONTROL!"

Yoda – Jedi Master

Where do photons go? Protein 1A x-rays

Where do photons go? Protein 1A x-rays

2% total \rightarrow error < 2%

attenuation factor

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière.

Lambert, J. H. (1760). *Photometria: sive De mensura et gradibus luminis, colorum et umbrae*. E. Klett.

Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", *Ann. Phys. Chem* **86**, 78-90.

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière.

Lambert, J. H. (1760). *Photometria: sive De mensura et gradibus luminis, colorum et umbrae*. E. Klett.

Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", *Ann. Phys. Chem* **86**, 78-90.

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière.

Lambert, J. H. (1760). *Photometria: sive De mensura et gradibus luminis, colorum et umbrae*. E. Klett.

Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", *Ann. Phys. Chem* **86**, 78-90.
attenuation factor **µ**_{solvent} 1,50 140 t_{si} t_{xi} μ_{xtal} 140 t_{si} t_{xi} ts **X**+0 $\frac{I_{T}}{beam} = exp[-\mu_{xtal}(t_{xi} + t_{xo}) -\mu_{solvent}(t_{si} + t_{so})]$

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière.

t_{si}

Lambert, J. H. (1760). *Photometria: sive De mensura et gradibus luminis, colorum et* umbrae. E. Klett.

t_{xi}

A =

Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, 78-90.

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

Elastic scattering

Photoelectric absorption

Photoelectric absorption

Fluorescence

Metal identification

Photoelectric absorption

Photoelectric absorption

Secondary ionization

Secondary ionization

e⁻

Excitation

Excitation

Excitation

Sample atoms

Primary ionization

Secondary ionizations

Ionization track

Ionization track

e⁻

Ionization track

223

initial effects

e⁻

Solvated electron

Timescales of radiation damage

Garret et. al. (2005) Chem. Rev. 105, 355-389

Timescales of radiation damage

Garret et. al. (2005) Chem. Rev. 105, 355-389

Rough values of energy quanta

- 1 MeV 100 GJ/mol
- 100 keV 10 GJ/mol
- 10 keV 1 GJ/mol
- 1 keV 100 MJ/mol
- 100 eV 10 MJ/mol
- 10 eV 1 MJ/mol
- 1 eV 100 kJ/mol
- 100 meV 10 kJ/mol
- 10 meV 1 kJ/mol

Medical radiation therapy Medical imaging X-ray crystallography S and P K-edges "water window" C≡C bond C-C bond, visible light hydrogen bond heat (~300 K)

Energy Transfer Analogy

Damage is done by dose (MGy) proportional to photons/area

not time not heat

Sliz P, Harrison SC & Rosenbaum G (2003). Structure 11, 13-19.
Garman EF & McSweeney SM (2006). J. Sync. Rad. 14, 1-3.
Owen RL, Rudino-Pinera E & Garman EF (2006). PNAS 103, 4912-4917.
Leiros et al. (2006). Acta Cryst. D 62, 125-132.
Holton JM (2007). J. Synch Rad. 14, 51-72.

what the is a MGy?

$1 \text{ MGy} = 10^6 \text{ J/kg}$

http://bl831.als.lbl.gov/ damage_rates.pdf

Holton J. M. (2009) J. Synchrotron Rad. 16 133-42

How long will my crystal last?

synch	line	type	flux	beamsize	flux densi	ty dose	max xtal	min site
			ph/s	μm	ph/µm2/s	rate	lifetime	lifetime
ALS	4.2.2	MAD	2.2e11	75x80	3.7e+07	27.3 kGy/s	18 m	73 s
ALS	5.0.1	mono	1.6e11	100	2.0e+07	10.4 kGy/s	48 m	3.2 m
ALS	5.0.2	MAD	8e11	100	1.0e+08	51.8 kGy/s	9.6 m	39 s
ALS	5.0.3	mono	1.7e11	100	2.2e+07	11 kGy/s	45 m	3 m
ALS	8.2.1	MAD	1.8e11	100	2.3e+07	11.7 kGy/s	43 m	2.9 m
ALS	8.2.2	MAD	2.3e11	100	2.9e+07	14.9 kGy/s	34 m	2.2 m
ALS	8.3.1	MAD	9e11	70	2.3e+08	119 kGy/s	4.2 m	17 s
ALS	8.3.1 ty	ypical	6e11	70	1.6e+08	115 kGy/s	4.3 m	17 s
ALS	12.3.1	MAD	1.8e11	100	2.3e+07	11.7 kGy/s	43 m	2.9 m
ALS	12.3.1	ML	4.0e12	100	5.1e+08	513 kGy/s	58 s	3.9 s
APS	8-BM	MAD	1e11	200	2.5e+06	1.27 kGy/s	6.6 h	26 m
APS	14-BM-C	mono	5.8e10	200	1.4e+06	738 Gy/s	11 h	45 m
APS	14-BM-D	MAD	3.3e9	200	8.2e+04	42 Gy/s	8.3 d	13 h
APS	14-ID-B	MAD	6.0e10	200	1.5e+06	763 Gy/s	11 h	44 m
APS	17-BM	MAD	1.1e11	200	2.8e+06	1.4 kGy/s	6 h	24 m
APS	17-ID	MAD	2.3e11	200	5.8e+06	2.93 kGy/s	2.8 h	11 m
APS	19-BM	MAD	2.0e11	70x60	4.8e+07	24.2 kGy/s	21 m	83 s
APS	19-ID	MAD	1.3e13	80x40	4.1e+09	2.07 MGy/s	15 s	0.97 s
APS	19-ID ty	ypical	5.5e11	100x100	5.5e+07	28 kGy/s	18 m	71 s
APS	22-BM	MAD	7e12	80x40	2.2e+09	1.23 MGy/s	24 s	1.6 s
APS	22-ID	MAD	7e12	80x40	2.2e+09	1.23 MGy/s	24 s	1.6 s
APS	22-ID ty	ypical	1.5e12	80	2.3e+08	119 kGy/s	4.2 m	17 s
APS	23-ID-B	MAD	1e13	75x25	5.3e+09	3.01 MGy/s	10 s	0.66 s
APS	23-ID ty	ypical	1.5e12	80	2.3e+08	119 kGy/s	4.2 m	17 s
APS	24-ID-C	MAD	1.3e13	20x60	1.1e+10	5.23 MGy/s	5.7 s	0.38 s
APS	24-ID-E	MAD	0.5e13	20x100	2.5e+09	1.19 MGy/s	25 s	1.7 s
APS	31-ID	MAD	2e12	70	4.1e+08	194 kGy/s	2.6 m	10 s

resolution dependence of global damage

Howells et al. (2009) J. Electron. Spectrosc. Relat. Phenom. **170** 4-12

resolution dependence of global damage

Howells et al. (2009) J. Electron. Spectrosc. Relat. Phenom. 170 4-12

data taken from Banumathi, et al. (2004) Acta Cryst. D 60, 1085-1093.

data taken from Banumathi, et al. (2004) Acta Cryst. D 60, 1085-1093.

Dose-doubling concentration

molar, at the Se edge based on RADDOSE

Na	44	As	0.44
Mg	27	Se	0.42
Р	9	Br	2.9
S	7	I	0.47
CI	5	Gd	0.21
K	3.3	Та	0.13
Ca	2.7	Pt	0.17
Fe	1.0	Au	0.16
Cu	0.67	Hg	0.16
Zn	0.58	U	0.23

Dose-doubling concentration

molar, at the Se edge based on RADDOSE

Na	44	As	0.44
Mg	27	Se	0.42
Р	9	Br	2.9
S	7	I	0.47
CI	5	Gd	0.21
K	3.3	Та	0.13
Ca	2.7	Pt	0.17
Fe	1.0	Au	0.16
Cu	0.67	Hg	0.16
Zn	0.58	U	0.23

Specific Damage World Records

MGy	reaction	reference
~45	global damage	Owen <i>et al.</i> (2006)
5	Se-Met	Holton (2007)
4	Hg-S	Ramagopal <i>et al.</i> (2004)
3	S-S	Murray <i>et al.</i> (2002)
1	Br-RNA	Olieric <i>et al.</i> (2007)
?	CI-C	???
0.5	Mn in PS II	Yano <i>et al.</i> (2005)
0.02	Fe in myoglobin	Denisov <i>et al.</i> (2007)

Holton (2009) J. Synchrotron Rad. 16 133-42

expected crystal lifetime calculator

+

source =	APS	-	22-ID 🔻		
full flux =	7.0e+12	photons/s			
attenuation =	0	%	transmittance =	100	%
beam size _{horiz} =	40.0	microns	beam size _{vert} =	80.0	microns
wavelength =	1	Ang	k _{dose} =	2000	photons/micron2/Gy
dose rate =	1.1e+6	Gy/s			
experiment goal =	high res	olution (cryo) 🔻			
resolution =	3	Ang			
dose limit =	30	MGy			
exposure time =	1	seconds/image			
xtal size _{horiz} =	50	microns	xtal size _{vert} =	50	microns
translation during dataset =	0	microns	rotisserie factor	1	disable warnings
max images =	28	at damage limit			
inverse beam =	no 🔻				
number of wavelengths =	1				
images/wedge =	28				

🕙 required number of c	ystals calculator - Mozilla Firefox	×				
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory	Bookmarks Tools Help					
🔇 🔊 - C 🗙	http://bl831.als.lbl.gov/xtalsize.html	\mathbf{p}				
required number of cr	stals calculator +	-				
Required crystal number or size calculator n _{xtals} = <i<sub>DL> / 20 * f_{NH} * MW * V_M² / exp(-0.5 * B/reso²) / xtalsize³ / (reso³ - 1.53)</i<sub>						
Enter values:						
experiment goal =	subtle differences (MAD/SAD) 🐱					
number of sites =	1 in asymmetric unit					
fpp =	4 electrons Bijvoet ratio = 1.75 %					
molecular weight =	30 kDa in asymmetric unit					
resolution =	3.4 Ang signal to noise = 81 at this resolution					
reso on snapshot =	2.4 Ang \rightarrow Wilson B = 35 Ang ²					
background level =	100 ADU/pixel multiplicity = 7.3					
spot size =	5 pixels					
detector type =	ADSC Q210/315r (hwbin)					
solvent content =	50 %					
xtal size _{beam} =	20 microns					
xtal size _{vert} =	20 microns beam size _{vert} = 100 microns					
xtal size _{spindle} =	20 microns beam size _{spindle} = 100 microns					
Calculate n_xtals	Calculate size ↑					
n _{xtals} =	1.4 xtals you will need to merge $\leftarrow $ 11000 photons/hkl	~				
Done	*	5) ,;				

Holton & Frankel (2010) Acta D 66 393-408.

The number of photons you get before a given crystal dies

is **independent** of data collection time

$1 \text{ um}^3 = 10^6 \text{ photons}$

http://www.nist.gov/pml/data/xcom/

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

Dose slicing

What if...

- You only have a few small crystals? Should you:
 - a) Collect 360° from each?
 - b) Collect 10° from each at 36x exposure?
 - c) Glue 36 xtals together, then collect 360°?
 - d) Glue together and do 12960°?

"true" resolution limit

Resolution (Å)

"true" resolution vs strategy

processing	Dose slice collection scenario				
procedure	fine	coarse	glue	gluefine	
XDS/XSCALE	3.03874	3.02970	3.0270	3.02948	
XDS/aimless	3.13351	3.03531	3.02638	3.05292	
XDS/noscale	3.01449	3.03048	3.02576	3.31013	

301,640,334 photons

Self-calibrated damage limit

$\left\langle I\right\rangle_{DL}=\frac{2\pi}{9}\frac{1}{2}$	$\frac{10^{5} r_{e}^{2}}{hc} \frac{f_{decaye}}{f_{NH} n_{AS}}$	$\frac{d\rho R^4 \lambda^4}{M_r V_M^2} \frac{0.5 \lambda H}{\ln(2) \sin \theta}$	$\frac{T_{\text{sphere}}(2\theta,\mu,R)}{\left(1-T_{\text{sphere}}(0,\mu_{en},R)\right)}$	$\frac{3 + \cos 4\theta}{\sin \theta} \frac{\left\langle f_{d} \right\rangle}{\left\langle M \right\rangle}$	$\left(\frac{2a}{a}\right)^{2} \exp\left(-2B\left(\frac{\sin\theta}{\lambda}\right)^{2}\right)$
	Where:				
	⟨I⟩ _{DL} 10 ⁵ r _e h c f _{decayed}	 average damage- converting <i>R</i> from classical electron Planck's constant speed of light (299) fractional progress 	limited intensity (photons/hkl μ m to m, r_e from m to Å, ρ f radius (2.818 x 10 ⁻¹⁵ m/elect (6.626 x 10 ⁻³⁴ J·s) 9792458 m/s) s toward completely faded sp (1.2 g/am ³)	l) at a given resol rom g/cm ³ to kg/r tron) pots at end of dat	ution m ³ and MGy to Gy ta set
	R	- radius of the sphe	rical crystal (µm)		
	λ	- X-ray wavelength	(Å)		No flux
	f _{NH} n _{ASU} M _r V _M H H	 the Nave & Hill (2) number of protein molecular weight Matthews's coeffic Howells's criterion Bragg angle 	005) dose capture fraction (1 <u>s in the asymmetric unit</u> of the protein (Daltons or g/n cient (~2.4 Å ³ /Dalton) n (10 MGy/Å)	I for large crystals	^{s)} No symmetry
	$ \begin{array}{c} $	 Bragg angle number-averaged number-averaged average (Wilson) attenuation coeffic mass energy-abse 	l squared structure factor per atomic weight of a protein a <u>temperature factor (Å²)</u> cient of sphere material (m ⁻¹) prption coefficient of sphere r	r protein atom (el itom (~7.1 Dalton) material (m ⁻¹)	ectron²) s)

Holton & Frankel (2010) Acta D 66 393-408.

Predicting resolution limits XFEL Resolution (Å) micron 10 micron 100 micron Synchrotron Resolution (Å)

B factor from image analysis

B = 500

B factor from image analysis

At the beamline...

Resolution

problem: background solution: use as few pixels as possible

Phases

problem: fractional errors solution: use as many pixels as possible

Resolution

http://bl831.als.lbl.gov/~jamesh/movies/resolution.mpeg

Completeness: random deletion

http://bl831.als.lbl.gov/~jamesh/movies/completeness.mpeg

Completeness: missing wedge

http://bl831.als.lbl.gov/~jamesh/movies/osc.mpeg

Overloads

http://bl831.als.lbl.gov/~jamesh/movies/overloads.mpeg

Resolution: low-angle cutoff

http://bl831.als.lbl.gov/~jamesh/movies/lo_cut.mpeg

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence mrad spot size vs distance Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence mrad spot size vs distance Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

quantity	units	home source	MX2
flux	Photons/second	2.5 x 10 ⁹	2 x 10 ¹²
exposure	seconds	400	1

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

quantity	units	home source	MX2
flux	Photons/second	2.5 x 10 ⁹	2 x 10 ¹²
exposure	seconds	400	1
Dispersion	wavelength range / wavelength	0.2% (Κα ₁ - Κα ₂)	0.014% (Si111)
Divergence	milliRadian	4.8	1.8 (h) 0.18 (v)
Beam size	microns	100	24 (h) 12 (v)
Spectral brightness	Photons/s/mm ² / mR ² /0.1%BW	5.4 x 10 ⁹	1.5 x 10 ¹⁷

		_	
quantity	units	home source	MX2
flux	Photons/second	72 x 10 ⁶	2 x 10 ¹²
exposure	time	4 hours	1 second
Dispersion	wavelength range / wavelength	0.2% (Κα ₁ - Κα ₂)	0.014% (Si111)
Divergence	milliRadian	4.8	1.8 (h) 0.18 (v)
Beam size	microns	17	24 (h) 12 (v)
Spectral brightness	Photons/s/mm ² / mR ² /0.1%BW	5.4 x 10 ⁹	1.5 x 10 ¹⁷

quantity	units	home source	MX2
flux	Photons/second	1 x 10 ⁶	2 x 10 ¹²
exposure	time	10 days	1 second
Dispersion	wavelength range / wavelength	0.2% (Κα ₁ - Κα ₂)	0.014% (Si111)
Divergence	milliRadian	0.6	1.8 (h) 0.18 (v)
Beam size	microns	17	24 (h) 12 (v)
Spectral brightness	Photons/s/mm ² / mR ² /0.1%BW	5.4 x 10 ⁹	1.5 x 10 ¹⁷

quantity	units	home source	MX2
flux	Photons/second	8 x 10 ⁴	2 x 10 ¹²
exposure	time	5 months	1 second
Dispersion	wavelength range / wavelength	0.014% (Si111)	0.014% (Si111)
Divergence	milliRadian	0.6	1.8 (h) 0.18 (v)
Beam size	microns	17	24 (h) 12 (v)
Spectral brightness	Photons/s/mm ² / mR ² /0.1%BW	5.4 x 10 ⁹	1.5 x 10 ¹⁷

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence mrad spot size vs distance Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

spectral dispersion

spectral dispersion

Si(111) vs multilayers

0.014% spectral 1% Si(111) dispersion multilayer

4 Å

resolution

1.9 Å

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

The truth about x-ray beams

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence spot size vs distance mrad Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

beam divergence

divergence = 0°

divergence = 0.3 °

The truth about x-ray beams

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence mrad spot size vs distance Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

Air absorption

The truth about x-ray beams

Term units significance photons/s Flux duration of experiment Beam Size match to crystal μm Divergence mrad spot size vs distance Wavelength Å resolution and absorption Dispersion $\Delta\lambda/\lambda$ spot size

Flux densityph/s/areascattering/damageFluenceph/areascattering/damage

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

beam size vs xtal size

1. Put your crystal into the beam

Put the "crystal" into the beam

2.5 Å

2.7Å

Evans et al. (2011)."Macromolecular microcrystallography", *Crystallography Reviews* **17**, 105-142.

"crystal" = thing you want to shoot

Membrane Protein Expression Center © 2012

beam size vs xtal size

- 1. Put your crystal into the beam
- 2. Shoot the whole crystal

shoot the whole crystal

shoot the whole crystal

shoot the whole crystal

How many crystals do you see?

Shoot the "crystal" (singular)

mosaic spread = 0 °

6

mosaic spread = 0.1°

mosaic spread = 0.2°

0

mosaic spread = 0.4°

mosaic spread = 0.6°

mosaic spread = 0.8°

mosaic spread = 1.0°

mosaic spread = 1.5°

mosaic spread = 6.4°

mosaic spread = 12.8^b

animit state to an

~0 MGy

5 MGy

shoot the whole crystal

MiTeGen MicroMesh grids

http://www.mitegen.com/products/micromeshes/micromeshes.shtml

beam size vs xtal size

- 1. Put your crystal into the beam
- 2. Shoot the whole crystal
- 3. Shoot nothing but the crystal

Gaussian beam

Collimated beam

beam size vs xtal size

- 1. Put your crystal into the beam
- 2. Shoot the whole crystal
- 3. Shoot nothing but the crystal
- 4. Back off!

Mosquito tips cost \$0.15 each

So do Pilatus pixels!

We bought 6,224,001 Use them!

(they are reusable)

Background scattering

Background scattering

real estate is expensive

use it!

Fine Slicing

bactoround

Pflugrath, J. W. (1999)."The finer things in X-ray diffraction data collection", *Acta Cryst. D* 55, 1718-1725.

background

Pilatus pile-up for RT MX? same photons, different speeds

1	4	5	1	2	6	5	2	14	17	13	9	9	7	1	2	2	1	1	3	2
1	1	2	2	4	з	4	з	29	30	25	22	20	12	5	7	2	0	0	з	З
1	з	1	з	з	4	5	5	58	79	71	85	95	78	19	4	з	2	з	2	2
4	6	3	2	з	5	6	44	419	685	747	890	1007	777	171	8	2	0	1	4	1
1	з	8	4	11	7	38	724	12483	18639	20506	18841	16832	9766	1662	18	11	2	з	з	1
4	4	2	6	13	16	74	3063	31927	26499	17788	10175	5929	2021	264	14	8	2	з	1	2
з	1	1	1	3	э	12	130	1042	734	445	260	158	78	20	1	2	0	4	0	З
1	1	2	1	1	4	8	17	102	93	65	65	55	28	10	2	з	2	1	2	З
1	1	3	0	3	5	3	20	74	73	53	36	35	9	8	3	4	4	1	з	0
	0	2	2	4	а	R	7	23	20	10	10	9	2	4	4	0	з	1	1	з
Si 19	Sum of 193 shots with 193-fold attenuation																			

Pilatus pile-up for RT MX? same photons, different speeds

1	0	0	1	2	2	3	5	22	23	14	16	13	9	4	2	з	4	2	2	2
1	2	2	2	4	1	2	10	37	38	37	31	31	18	4	5	2	4	1	1	2
1	з	0	2	2	2	3	15	88	105	101	83	106	95	19	4	2	3	2	4	1
4	з	1	1	2	9	14	60	585	930	980	1014	1115	893	226	5	2	0	1	2	з
1	2	4	6	4	14	66	738	1680			1278	1306	1174	1052	31	9	7	7	5	2
5	1	2	6	7	17	84	1198			1281	1305	1442	1094	211	13	6	2	4	4	5
5	2	4	5	4	з	14	132	1112	831	480	255	147	71	14	5	4	6	3	з	0
2	0	2	2	4	1	5	21	137	147	94	109	53	31	5	4	1	1	4	з	1
0	з	2	2	5	6	6	17	108	104	64	48	39	12	5	з	4	2	4	0	0
1	2 -	2	2	2	1	2	4	17	19	10	16	9	6	2	3	3	2	0	6	1
1 nc	sno o att	τw :eni	itn uati	on	1	0	3	15	12	5	7	4	4	1	2	1	2	0	0	1

Pilatus pile-up for RT MX? same photons, different speeds

Classes of error in MX

Dependence on signal

		none	sqrt	proportional
Time	none	CCD Read-out	Photon counting	Detector calibration attenuation partiality Non-isomorphism Radiation damage
	1/sqrt			Beam flicker
	1/prop.			Shutter jitter Sample vibration Pile-up

normalized flux through pinhole

This is an Aperture!

Classes of error in MX

Dependence on signal

		none	sqrt	proportional
Time	none	CCD Read-out	Photon counting	Detector calibration attenuation partiality Non-isomorphism Radiation damage
	1/sqrt			Beam flicker
	1/prop.			Shutter jitter Sample vibration Pile-up

Optimal exposure time (faint spots on CCD)

$$t_{hr} = t_{ref} \frac{10 \cdot m \cdot \sigma_0^2}{gain \cdot (bg_{ref} - bg_0)}$$

 t_{hr} t_{ref} bg_{ref} bg_0 bg_{hr} σ_0 gainm Optimal exposure time for data set (s)
exposure time of reference image (s)
background level near weak spots on
reference image (ADU)
ADC offset of detector (ADU)
optimal background level (via t_{hr})
rms read-out noise (ADU)
ADU/photon
multiplicity of data set (including partials)

PAD full vs partial

time
Optimal exposure time (faint spots on PAD)

 $t_{hr} > t_{ro} / 5\%$

 t_{hr} Optimal exposure time (s) t_{ro} read-out time (s)2.03 ms on PILATUS3 S3 µs on EIGER

Optimal exposure time (anomalous on PAD)

0.2 s

 t_{ano} Optimal exposure time (s) t_{ro} read-out time (s)2.03 ms on PILATUS3 S3 µs on EIGER

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

How to avoid time-dependent error?

Attenu-wait!

Apply 10x attenuation Expose 10x longer

Number of photons should be the same! Damage will also be the same!

beam size vs xtal size

- 1. Put your crystal into the beam
- 2. Shoot the whole crystal
- 3. Shoot nothing but the crystal
- 4. Back off!
- 5. The crystal must rotate

The crystal rotates!

The crystal rotates!

Membrane Protein Expression Center © 2012

Shoot nothing but the "crystal"

2.7Å

Evans et al. (2011)."Macromolecular microcrystallography", Crystallography Reviews **17**, 105-142.

Decisions, Decisions, Decisions

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

avoiding overlaps

avoiding overlaps

SmarAct's "SmarGon" Commercialized PRIGo

At the beamline...

Resolution

problem: background solution: use as few pixels as possible

Phases

problem: fractional errors solution: use as many pixels as possible

R-factor

http://bl831.als.lbl.gov/~jamesh/movies/rfactor.mpeg

Figure of Merit

http://bl831.als.lbl.gov/~jamesh/movies/dephase.mpeg

anomalous signal

$\frac{\Delta F}{F} \approx 1.2 \text{ f"} \sqrt{\frac{\text{\# sites}}{MW (Da)}}$

World record! $\Delta F/F = 0.5\%$

Wang, Dauter & Dauter (2006) *Acta Cryst. D* **62**, 1475-1483.

Crick, F. H. C. & Magdoff, B. S. (1956) *Acta Crystallogr.* **9**, 901-908. Hendrickson, W. A. & Teeter, M. M. (1981) *Nature* **290**, 107-113.

Fractional error

🕙 required number of c	crystals calculator - Mozilla Firefox			
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory	<u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			
🔇 🔊 - C 🗙	☆ [] http://bl831.als.lbl.gov/xtalsize.ht	ml	🖒 👻 Wikipedia (er	n) 🔎
required number of cr	rystals calculator 🔸			-
<u>ь</u> .			•	^
Required c	crystal number of	size calcu	lator	
	· · · · ·	2 2		
$n_{xtals} = \langle I_{DL} \rangle / 20 * f_{NI}$	H * MW * VM ⁴ / exp(-0.5 * B/reso ²))/xtalsize ² /(reso ² - 1	.53)	
Enter values:				
experiment goal =	subtle differences (MAD/SAD) ⊻			
number of sites =	1 in asymmetric unit			
fpp =	4 electrons	Bijvoet ratio =	1.75 %	
molecular weight =	30 kDa in asymmetric unit			_
resolution =	3.4 Ang	signal to noise =	81 at this resolution	
reso on snapshot =	2.4 Ang	\rightarrow Wilson B =	35 Ang ²	
background level =	100 ADU/pixel	multiplicity =	7.3	
spot size =	5 pixels			
detector type =	ADSC Q210/315r (hwbin)			
solvent content =	50 %			
xtal size _{beam} =	20 microns			
xtal size _{vert} =	20 microns	beam size _{vert} =	100 microns	
xtal size _{spindle} =	20 microns	beam size _{spindle} =	100 microns	
Calculate n_xtals	Calculate size ↑			
n _{xtals} =	1.4 xtals you will need to merge	$e \leftarrow $	11000 photons/hkl	
Dopo				×
Done				- K D ;;

Holton & Frankel (2010) Acta D 66 393-408.

Systematic error does not "average out"

Can you count to 1,000,000 ?

 $\frac{\text{sqrt}(1,000,000)}{1.000,000} = 0.1\%$ **Theoretically:**

 $R_{meas} \approx 0.1\%$? \longrightarrow ISa = 1000

 $ISa \sim 33 \longrightarrow R_{meas} \approx 3\%$ In reality:

Threshold of a revolution in phasing

Threshold of a revolution in phasing

Source of error	realistic simulation
Photon counting	+
Shutter jitter	+
Beam flicker	+
Sample absorption	+
Radiation damage	+
Imperfect spindle	+
vignette	+
Corner correction	+
SHSSS	+
R _{meas} (∞-10 Å)	2.8%
I/σ asymptotic	26.8

Holton et al (2014) "R-factor gap", FEBS Journal 281,

Pilatus: subtract smooth baseline

~3x10⁵ photon/pixel

CCD calibration: 7235 eV

CCD calibration: 7247 eV

Gadox calibration vs energy

Data collection parameters:

- 16 crystals
- 360° each, inverse beam
- 7235 eV photon energy
- < 1 MGy per xtal</p>
- Australian Synchrotron MX1
 –35 kGy/s into 100 µm x 100 µm

140-fold	multiplicity:	16 crys	tals, 36	0° each	, invers	e bean	n, 723	5 eV
RESOLUTION	COMPLETENESS	R-FACTOR	I/SIGMA	R-meas	CC(1/2)	Anomal	SigAno	Nano
LIMIT	OF DATA	observed				Corr		
9.17	99.1%	3.9%	257.47	3.9%	100.0*	91*	5.024	450
6.49	100.0%	5.2%	214.33	5.2%	100.0*	86*	3.836	882
5.30	100.0%	7.2%	165.13	7.2%	100.0*	76*	3.257	1175
4.59	100.0%	7.2%	175.42	7.3%	100.0*	67*	2.589	1403
4.10	99.9%	7.7%	174.13	7.7%	100.0*	59*	2.264	1594
3.74	99.9%	9.4%	143.09	9.4%	100.0*	49*	1.953	1783
3.47	100.0%	11.2%	120.17	11.2%	100.0*	39*	1.696	1942
3.24	100.0%	14.1%	91.14	14.1%	100.0*	30*	1.333	2103
3.06	99.9%	19.5%	65.79	19.5%	100.0*	23*	1.117	2214
2.90	99.9%	29.0%	44.85	29.1%	99.9*	17*	1.008	2369
2.77	99.9%	40.5%	32.58	40.6%	99.8*	11*	0.901	2493
2.65	99.9%	52.8%	25.16	52.9%	99.8*	10*	0.866	2605
2.54	100.0%	67.4%	19.47	67.6%	99.6*	2	0.804	2705
2.45	100.0%	88.9%	14.58	89.2%	99.2*	4	0.831	2859
2.37	100.0%	109.3%	9.97	109.7%	98.1*	5	0.829	2925
2.29	100.0%	138.2%	6.87	138.9%	96.1*	1	0.760	3037
2.22	100.0%	197.1%	4.03	198.6%	83.5*	-1	0.721	3159
2.16	100.0%	227.3%	2.41	230.8%	46.9*	-1	0.677	3224
2.10	61.2%	154.4%	1.28	163.6%	47.0*	-2	0.660	1999

0.68

54.30

196.5%

15.8%

2.05

total

47.9%

93.3%

170.1%

15.7%

3

12*

0.629

1.217

1578

42499

25.7*

100.0*

Phased anomalous difference Fourier

 $15\sigma = PO_4$

$+2\sigma = Mg?$

Phased anomalous difference Fourier

+8.2 σ = Mg or Na

DELFAN residual anomalous difference

Why doesn't everyone do this?

non-isomorphism

X-ray Data Sets

Singular values & vectors

data	struc	cture	factor	s (F)		Value	100	17	13	9
h,k,l	#1	#2	#3	#4	Singular	Ctor	%	%	%	%
5,3,4	523.7	559.8	579.9	603.2	value	h,k,l	150	Ziiu	3 ^{ru}	4
5.4.4	168.2	166.6	177.2	196.1	decomp.	5,3,4	-1.46	-0.02	1.84	-0.72
5.5.4	34.9	26.4	19.2	17.3	SVD	5,4,4	-0.88	-0.29	-0.34	0.15
614	305.7	301 1	298.1	296.3		5,5,4	-0.42	-0.65	1.02	1.47
624	252.0	252.0	256.2	266.0		6,1,4	-0.90	-0.85	1.44	-0.40
0,2,4	200.0	333.9	070.Z	250.9		6,2,4	-1.20	-0.37	0.67	0.01
6,3,4	300.9	285.3	273.5	209.4		6,3,4	-0.75	0.31	0.48	0.00
6,3,5	223.8	226.3	234.6	251.4		6,3,5	-0.75	-0.85	0.72	-0.82
			101 10							
			-							
Correlat Coefficio	tion tion tion	0.68 CC1	-0.24 CC2	0.3	2 3 <u>data set #1</u> <u>data set #2</u> <u>data set #3</u>		CC	1 CC2 CC3	Data Posit i 'Corro Spa	i sets ioned n elation ace"

Bragg's "minimum wavelength principle"

Perutz (1985). "Early Days of Cryst..." *Methods in Enzymology*, Vol. 114, 3-18. Bragg & Perutz (1952)."external form haemoglobin I", *Acta Cryst.* **5**, 277-283.

DMMULTI – fake data 4 deg rotation: 8 "xtals": after

Suggested anomalous protocol:

- 1. 360° in < 5 MGy
- 2. move detector3. 4X exposure

4. goto 2

2 wavelengths are better than 1 - (peak + inf)/2, and remote MAD, not M-SAD!

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

Optimal exposure time

$$t_{hr} = t_{ref} \frac{10 \cdot m \cdot \sigma_0^2}{gain \cdot (bg_{ref} - bg_0)}$$

 t_{hr} t_{ref} bg_{ref} bg_0 bg_{hr} σ_0 gainm Optimal exposure time for data set (s)
exposure time of reference image (s)
background level near weak spots on
reference image (ADU)
ADC offset of detector (ADU)
optimal background level (via t_{hr})
rms read-out noise (ADU)
ADU/photon
multiplicity of data set (including partials)

Optimal exposure time (PAD)

 $t_{hr} > 100 \times t_{ro}$

 t_{hr} Optimal exposure time for data set (s) t_{ro} read-out time (s)2.03 ms on PILATUS3 S3 µs on EIGER

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

expected crystal lifetime calculator

+

source =	APS	•	22-ID 🔻		
full flux =	7.0e+12	photons/s			
attenuation =	0	%	transmittance =	100	%
beam size _{horiz} =	40.0	microns	beam size _{vert} =	80.0	microns
wavelength =	1	Ang	k _{dose} =	2000	photons/micron2/Gy
dose rate =	1.1e+6	Gy/s			
experiment goal =	high res	olution (cryo) 🔻			
resolution =	3	Ang			
dose limit =	30	MGy			
exposure time =	1	seconds/image			
xtal size _{horiz} =	50	microns	xtal size _{vert} =	50	microns
translation during dataset =	0	microns	rotisserie factor	1	🔲 disable warnings
max images =	28	at damage limit			
inverse beam =	no 🔻				
number of wavelengths =	1				
images/wedge =	28				

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

Gadox calibration vs energy

attenuation factor **µ**_{solvent} 1,50 140 t_{si} t_{xi} μ_{xtal} **1** t_{si} t_{xi} ts **X**+0 $\frac{I_{T}}{beam} = exp[-\mu_{xtal}(t_{xi} + t_{xo}) -\mu_{solvent}(t_{si} + t_{so})]$

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière.

t_{si}

Lambert, J. H. (1760). *Photometria: sive De mensura et gradibus luminis, colorum et* umbrae. E. Klett.

t_{xi}

A =

Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, 78-90.

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

Systematic error does not "average out"

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

SmarAct's "SmarGon" Commercialized PRIGo

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

- Exposure time
- Number of images
- Wavelengths
- Beam: size, flux, divergence, bandpass
- Inverse beam?
- Kappa? overlaps
- Multiple crystals? non-isomorphism

URL Summary

http://bl831.als.lbl.gov/~jamesh/powerpoint/ IGBMC_SvN_2016.pptx http://bl831.als.lbl.gov/xtalsize.html http://bl831.als.lbl.gov/xtallife.html

> 100 ADU/pixel 10 µm for lysozyme ~3% error per spot, 1%/MGy 7235 eV for S-SAD on CCDs "Attenu-wait" & dose slicing

CCP4: aimless log

\$TABLE: Analysis against resolution, XDSdataset: \$GRAPHS:I/sigma, Mean Mn(I)/sd(Mn(I)):0|0.216023x0|137.14:2,13,14: :Rmerge, Rfull, Rmeas, Rpim v Resolution:0|0.216023x0|1.70834:2,4,5,6,7: :Average I, RMSdeviation and Sd:0|0.216023x0|1650.8:2,10,11,12: :Fractional bias:0|0.216023x0|0:2,15:

\$\$

Ν	1/d^2	Dmid	Rmrg	Rfull	Rcum	Rmeas	Rpim	Nmeas	AvI	RMSdev	sd	I/RMS	Mn(I/sd)	Frd
1	0.0064	12.55	0.020	0.020	0.020	0.021	0.006	13115	1651	57	42	29.2	137.1	
2	0.0191	7.24	0.027	0.027	0.024	0.028	0.008	24753	1171	47	42	25.0	105.2	
3	0.0318	5.61	0.038	0.038	0.029	0.040	0.012	32197	857	46	43	18.4	79.6	
4	0.0445	4.74	0.034	0.034	0.031	0.035	0.010	37743	<u>1212</u>	57	53	21.4	91.2	
5	0.0572	4.18	0.036	0.036	0.032	0.038	0.011	42642	1181	59	57	19.9	83.8	
6	0.0699	3.78	0.049	0.049	0.036	0.052	0.015	47224	883	59	57	15.1	65.1	
7	0.0826	3.48	0.065	0.065	0.040	0.068	0.020	51052	685	59	58	11.7	50.9	
8	0.0953	3.24	0.096	0.096	0.045	0.100	0.029	54636	448	56	56	8.0	35.0	
9	0.1080	3.04	0.151	0.151	0.050	0.158	0.046	58072	268	53	53	5.1	22.7	
10	0.1207	2.88	0.229	0.229	0.056	0.240	0.070	60731	171	51	51	3.3	15.4	
11	0.1334	2.74	0.314	0.314	0.063	0.329	0.097	63807	125	51	51	2.4	11.3	
12	0.1461	2.62	0.406	0.406	0.070	0.425	0.125	66241	98	51	52	1.9	8.7	
13	0.1588	2.51	0.537	0.537	0.078	0.562	0.166	68272	76	53	53	1.4	6.5	

CCP4: aimless log

\$TABLE: Correlations CC(1/2) within dataset, XDSdataset: \$GRAPHS: Anom & Imean CCs v resolution:0|0.216023x0|1:2,4,7: : RMS correlation ratio :0|0.216023x0|2.20344:2,6: \$\$

Ψ						
Ν	1/d^2	Dmid CCanom	Nanom	RCRanom	CC1/2	NImean
1	0.0064	12.55 0.659	499	2.203	1.000	669
2	0.0191	7.24 0.550	975	1.853	1.000	1155
3	0.0318	5.61 0.527	1295	1.798	1.000	1479
16	0.1970	2.25 0.037	2123	1.038	0.711	2275
17	0.2097	2.18 0.043	1682	1.044 (0.460	1877
					\sim /	

XDS: CORRECT.LP or XSCALE.LP

OMPARED	I/SIGMA	R-meas	CC(1/2)	Anomal	SigAno
				Corr	
3018	33.77	2.3%	99.9*	21*	1.012
4585	22.56	3.6 %	99.8*	9	0.914
5327	19.99	4.0 %	99.7*	9	0.859
6094	12.27	6.8 %	99.3*	-1	0.784
7068	6.01	14.2 %	97.8*	-2	0.799
8185	3.10	29.4 %	88.8*	-4	0.776
8981	1.90	48.8 %	75.9*	2	0.765
5991	1.14	87.3%	53.5*	-2	0.722
2520	0.59	170.4%	21.9*	4	0.693
51769	8.97	9.5 %	99.5*	2	0.804

XDS: CORRECT.LP or XSCALE.LP

CORRECTION PARAMETERS FOR THE STANDARD ERROR OF REFLECTION I

The variance vO(I) of the intensity I obtained from counting st replaced by $v(I)=a^*(vO(I)+b^*I^2)$. The model parameters a, b are minimize the discrepancies between v(I) and the variance estima sample statistics of symmetry related reflections. This model i an asymptotic limit ISa=1/SQRT(a*b) for the highest I/Sigma(I) experimental setup can produce (Diederichs (2010) Acta Cryst D6