3D Classification

Marin van Heel

Leiden University/Imperial College London/LNNano Campinas

Strasbourg 7 October 2016

3D Classification

Marin van Heel

Leiden University/Imperial College London/LNNano Campinas

Strasbourg 7 October 2016

Fundamentals operations in reconstructions and projections

(van Heel 1987)

Fundamentals operations with heterogeneous data

3D Classification

Marin van Heel

Leiden University/Imperial College London/LNNano Campinas

Strasbourg 7 October 2016

Supervised Classification

(looking for a specific thing, matched filtering, find my reference, reference bias)

Unsupervised Classification

(comparing everything to everything and let the data speak for itself, avoid bias)

Nomenclature has become a mess...

2D Classification ?3D Classification ?

(you decide what makes sense, not the classification program)

MANKOFF

Biology is a mess...

(you need powerful multivariate statistical tools to make sense of it all)

Van Heel M, Portugal RV, Schatz M: **MSA of large datasets single particle electron microscopy**. *OJS* **6** (2016) 701-739. http://dx.doi.org/10.4236/ojs.2016.64059

Multivariate statistics:

is all about distances, correlations...

Correlation / Inner Product =
$$\sum_{a} F(a) \cdot G(a)$$

(Euclidian Distance)² = $\sum_{a} (F(a) - G(a))^2$
Dist.² = $\sum_{a} (F^2(a) - 2(F(a) \cdot G(a)) + G^2(a))$
Dist.² = $\sum_{a} F^2(a) - 2 \cdot \sum_{a} (F(a) \cdot G(a)) + \sum_{a} G^2(a)$
Normalised Signal = $F(a) / \sqrt{\sum_{a} F^2(a)} = F(a) / SD_F$

Hyperspace Data Representation of single particle images

Data Compression!

USE OF MULTIVARIATE STATISTICS IN ANALYSING THE IMAGES OF BIOLOGICAL MACROMOLECULES

Hyperspace representation and Classification

Data Matrix "X"

(Ref.: Review 2000)

From algorithm to mathematics: Х'. Х. U = U. Л In detail eigenvector equation: $X' \cdot N \cdot X \cdot M \cdot U = U \cdot J$ With orthonormalisation constraint: $U' \cdot M \cdot U = Ip$ In conjugate space: $X \cdot M \cdot X' \cdot N \cdot V = V \cdot J$ With orthonormalisation constraint: $U' \cdot M \cdot U = Ip$

MSA Parallel Programming

Parallel MSA and its scaling with the number of available CPUs (tested on 32 nodes with each 4 CPUs). The calculations necessary for standard MSA algorithm (top left) are distributed over the available CPUs (lower left). I/O is parallelized by copying the relevant part of the huge input data file to the local scratch file available on each node. Overall speed increase with the current version of the MSA (see text) and images of size 256x256 is around 27 times (Full Program). MSA analysis of Lumbricus Terrestris hemoglobin

Automatic Classification

Average images in each class

Fig. 1. An example of a hierarchical classification tree. In an hierarchical ascendant classification the procedure starts at the bottom of the figure with as many classes as there are images (10 in this example). The two classes that are closest together in terms of a classification criterion are merged into a larger class. The straight cut through the classification tree leads to a variance-oriented partitioning. A useful alternative is to follow the tree up and down, to obtain a class-size-oriented partition. For details see text.

Add. Var._{i,i'} = $\frac{w_i w_{i'}}{w_i + w_{i'}} d_{i,i'}^2$

Ward Criterion

ABC-4D (Alignment by classification) 1000 class averages (144,000 particles)

334

555

336

REE

-

551

332

From 2D classes to 3D Structure(s)

Three-Dimensional reconstruction from projections

We first need to find the relative angles to do a 3D reconstruction...

Intersecting Central Sections (DeRosier Klug 1968; Crowther1971

Fundamentals operations in 3D reconstructions and projections

(van Heel 1987)

Fundamentals operations in reconstructions and projections

Width of Central Section: Central Section Slab

Reciprocity Real and Fourier Space

Real Space

Fourier Space

Overlapping central sections in Fourier space

Fig. 14. Overlapping central sections. Fourier-space central sections, associated with 2D projections a 3D object of linear size 'D', have a width '1/D'. Central sections in Fourier space always overlap at very low frequencies, that is, close to the origin. Neighbouring central section, separated by an angle ϕ , cover largely the same information up to spatial frequency ' f_e '. The overlap of central sections is fundamental in both 3D reconstruction algorithms and in determining the highest isotropic resolution achievable for a given 3D reconstruction geometry. The areas of the 3D Fourier space volume not covered by the central section 'slabs' are not measured and are referred to as 'missing cone' or 'missing wedge' depending on the 3D reconstruction geometry.

Early projection matching experiments: Budapest 1984 Abstract

Figure 1. Continuous stereographic representation of "phantom" used to investigate properties of self-optimizing 3D reconstruction

Figure 2. Stereo representation of "phantom" reconstructed using random starting angles; viewed from same directions as above.

Angular Reconstitution

2D

2D

2D

(MvH 1987)

70S E. coli projection plus sinograms

Intersecting Central Sections in 3D Fourier space

4D Data Processing

4D cryo-EM!

RF3 Complex Type-1 vs. Type-2 (Klaholz *et al*, Nature, 2004)

IMAGIC 4D:

A typical 4D refinement round)

Meaning of columns: # in this bin, bin value

A typical 4D refinement round

Histogram of AR ERROR

1380	0	0	4.78E+01
1345	35	35	5.81E+01 ****
1020	3 60	325	6.33E+01 ************************************
641	739	379	6.85E+01 ************************************
436	944	205	7.37E+01 ************************************
341	1039	95	7.89E+01 *********
256	1124	85	8.41E+01 *********
206	1174	50	8.93E+01 *****
163	1217	43	9.45E+01 *****
119	1261	44	9.96E+01 *****
89	1291	30	1.05E+02 ***
70	1310	19	1.10E+02 **
59	1321	11	1.15E+02 *
42	1338	17	1.20E+02 **
32	1348	10	1.262+02 *
25	1355	7	1.31E+02 *
19	1361	6	1.362+02 *
17	1363	2	1.41E+02
12	1368	5	1.46E+02 *
0	1380	12	1.57E+02 *

Low values binned at lower edge : 0 High values binned at higher edge: 12

Meaning of columns: # remaining, # accumulated, # in this bin, bin value

1/92

1/93

1794

1797

1/99

1/100

1/104

1/105

2/92

2/93

2/94

2/97

2/98

2/99

2/100

2/104

2/105

3/92

3/93

3/94

3/97

3/98

3/99

3/100

3/103

3/104

3/105

4/92

4/93

4/94

4/97

4799

4/100

4/103

4/104

4/105

Stark et al Nature 2010

4D cryo-EM!

Focussed classification in 2D

> RF3 Complex Type-1 vs. Type-2 (Klaholz et al, Nature, 2004)

Focussed classification in 3D/4D: process each Globin fold independently Pavel Afanasyev (Leiden/Maastricht) Charlotte Linnemayr-Seer (Zurich) Bart Alewijnse (NeCEN) Michael Schatz (ImSc/Berlin) Ralf Schmidt (ImSc/Berlin) Sacha de Carlo (FEI/NeCEN) Rishi Matadeen (NeCEN) Rodrigo Portugal (LNNano)

and many others...