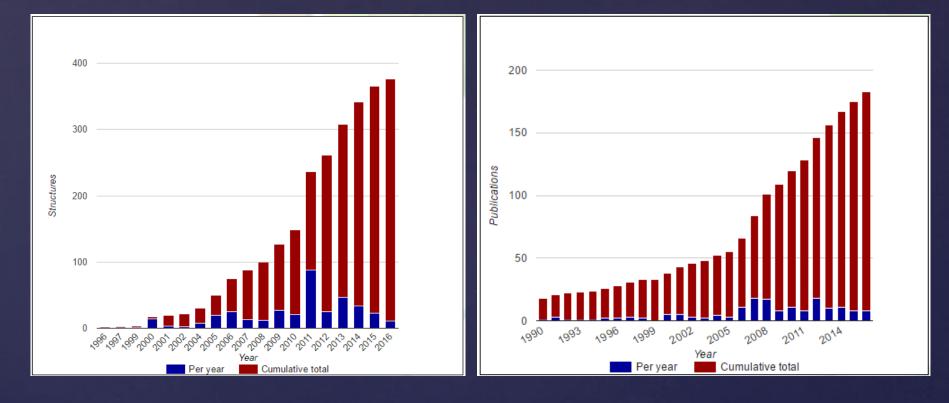


Toward the Future of Structural Biology

Wladek Minor

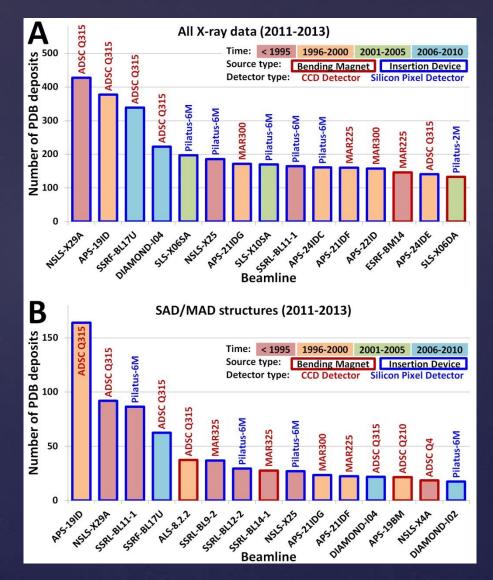
Structural Biology for the high-throughput high-output era

High throughput SB


- Automatic cloning
- HT automatic expression
- HT automatic purification
- HT automatic crystallization
- HT automatic data collection
- HT automatic structure solution/refinement

High throughput SB

- Automatic cloning
- HT automatic expression
- HT automatic purification
- HT automatic crystallization
- HT automatic data collection
- HT automatic structure solution/refinement


Automatic paper writing

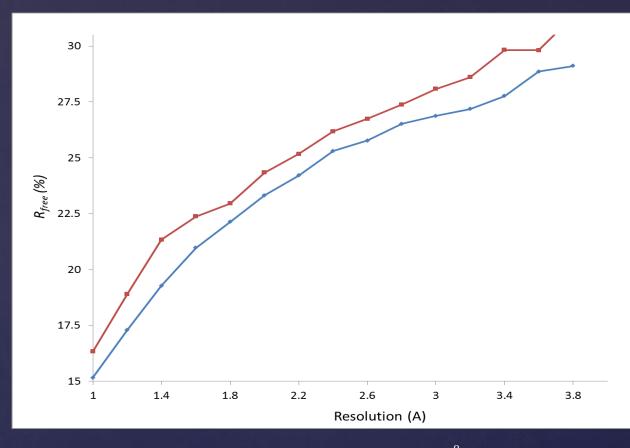
User perspective

Where we should collect data ?

Zheng et al, Expert Opinion on Drug Discovery(2014) 9: 125-37

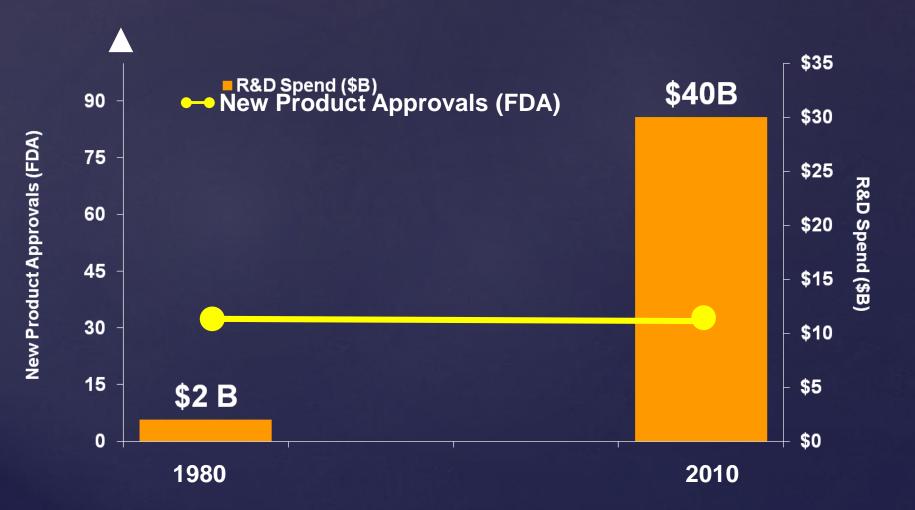
Diffraction experiment - the last experiment before deposition to PDB

Dataset – 2minutes, sample change 2minutes -> 10minutes 6 datasets/hour -> 144 datasets/day 180 days -> 25920 datasets/day -> 2.5 PDB 125 synchrotron stations -> 324 PDB Efficiency -> 0.3%

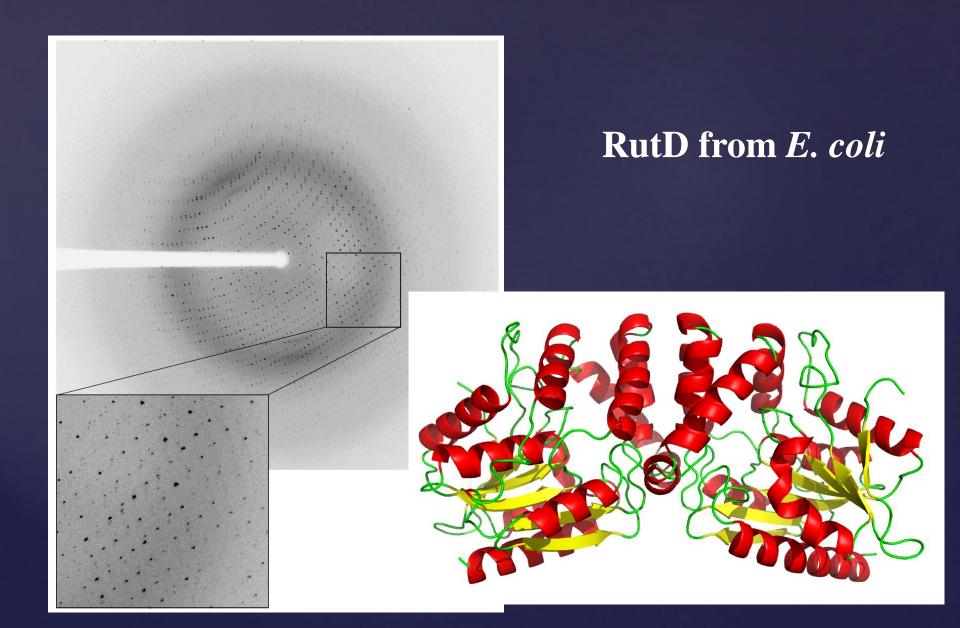

User from a Programmer Point of View

"The most common source of errors is located between a chair and keyboard"

What experimenters know about data collection ?


REMARK	3	ESTIMATED OVERALL COORDINATE F	RROR.					
REMARK	3	ESU BASED ON R VALUE					(A):	NULL
REMARK	3	ESU BASED ON FREE R VALUE						NULL
REMARK	3	ESU BASED ON MAXIMUM LIKELIHO	DOD					NULL
REMARK	3	ESU FOR B VALUES BASED ON MAX	KIMUM LI	KE	LIHOOD			
REMARK	3					90029	10000 100003	
REMARK	3	RMS DEVIATIONS FROM IDEAL VALU	JES.					
REMARK	3	DISTANCE RESTRAINTS.			RMS		SIGMA	
REMARK	3	BOND LENGTH	(A)		NULL	;	NULL	
REMARK	3	ANGLE DISTANCE			NULL			
REMARK	3	INTRAPLANAR 1-4 DISTANCE	(A)	8	NULL	;	NULL	
REMARK	3	H-BOND OR METAL COORDINATION			NULL		NULL	
REMARK	3							
REMARK	3	PLANE RESTRAINT	(A)		NULL	;	NULL	
REMARK	3	CHIRAL-CENTER RESTRAINT	(A**3)		NULL	;	NULL	
REMARK	3							
REMARK	3	NON-BONDED CONTACT RESTRAINTS	5.					
REMARK	3	SINGLE TORSION	(A)		NULL	;	NULL	
REMARK	3	MULTIPLE TORSION	(A)		NULL	2	NULL	
REMARK	3	MULTIPLE TORSION H-BOND (XY) H-BOND (X-HY)	(A)	3	NULL	;	NULL	
REMARK	3	H-BOND (X-HY)	(A)		NULL	;	NULL	
REMARK	3							
REMARK	3	CONFORMATIONAL TORSION ANGLE	RESTRAI	N7	s.			
REMARK	3	SPECIFIED (I	EGREES)		NULL	;	NULL	
REMARK	3	PLANAR (I	EGREES)	1	NULL	;	NULL	
REMARK	3	STAGGERED (I	EGREES)		NULL	;	NULL	
REMARK	3	TRANSVERSE (I	EGREES)		NULL	;	NULL	
REMARK	3							
REMARK	3	ISOTROPIC THERMAL FACTOR RESTR	RAINTS.		RMS		SIGMA	
REMARK	3	MAIN-CHAIN BOND	(A**2)	:	NULL	;	NULL	
REMARK	3	MAIN-CHAIN ANGLE	(A**2)	:	NULL	;	NULL	
REMARK	З	SIDE-CHAIN BOND	(A**2)	:	NULL	;	NULL	

Unexpected correlation?


Average R_{free} by resolution bin (with a width of 0.2 Å for X-ray crystallography PDB structures deposited after January 1, 2001, divided into two groups by the number of missing data items ("NULLs") in the PDB file. The means for "high-completion" deposits (20 NULLs or less) are shown in blue, and the means for "low-completion" deposits (50 or more NULLs) are shown in red.

Industry R&D Spend Compared to New Product Approvals

T.Skarzynski – Agilent, Glaxo

... number of crystals

Data collection

- What is beneficial for particular type of experiment (MR, SAD, MAD, Ligand screening) ?
- What is possible ?

Examples:

- Wide sectors vs. narrow sectors
- Inverse beam experiment
- Crystal orientation

Theory vs. Experiment

In theory,

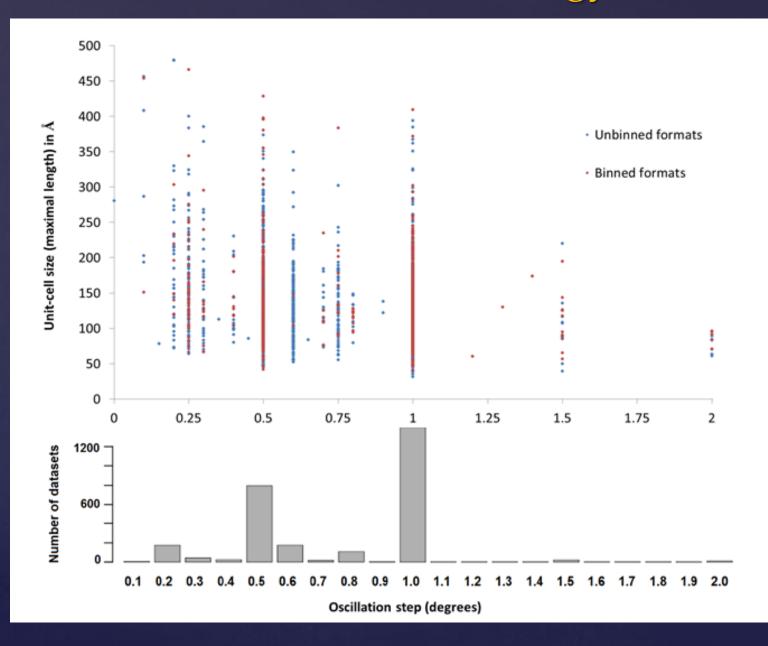
there is no difference between theory and practice.

Theory *vs.* Experiment

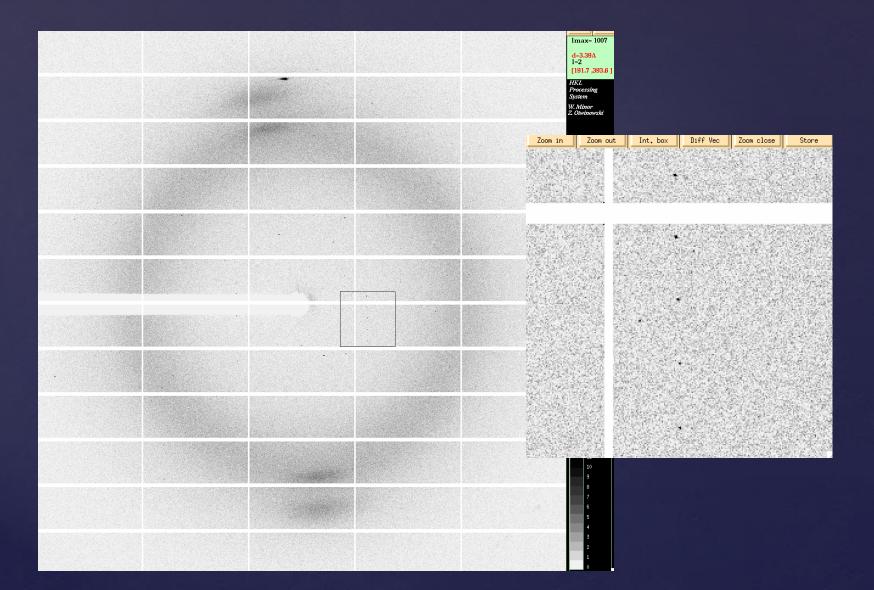
In theory,

there is no difference between theory and practice.

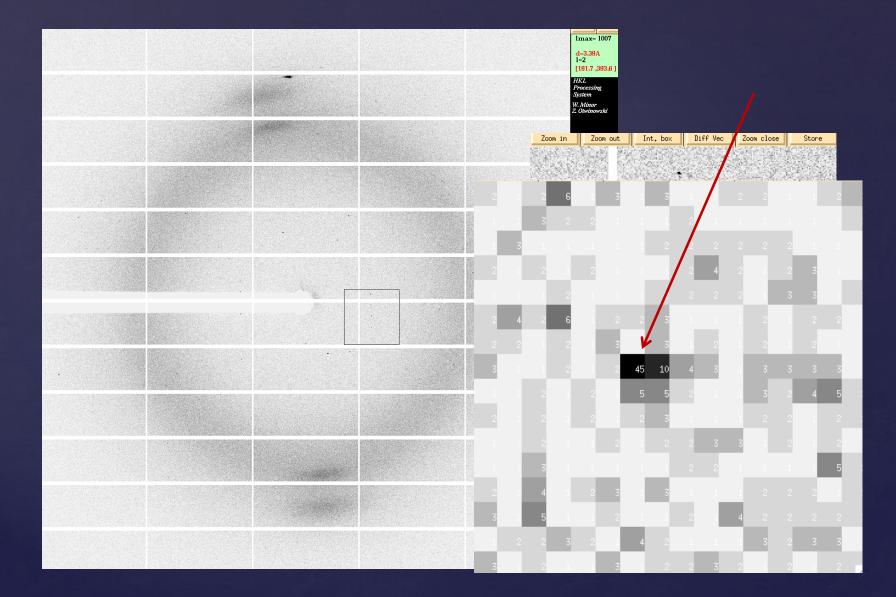
But, in practice, there is.


Jan L.A. van de Snepscheut

http://www.proteindiffraction.org


proteindiffraction.org	×		► - □ ×
→ C D prote	<u> </u>	ne 🕋 Dean's Office Blog 🕋 UVa - FinancialRep 🌓 Save to Mendeley 🌓 Minor Laboratory 🕋 UVa-Fi	값 😋 🗵 🗉 🗉
Apps CAWEO	Home O About Browse	Statistics Submit data	TeliAndi
	Diffee of the Director Data Science at NHH	Integrated Resource for Reproducibility in Macromolecular Crystallography This project is being funded by the Targeted Software Developm U01 HG008424-01 as part of the BD2K (Big Data to Knowledge National Institute of Health. The project is developing tools for "v from protein diffraction experiments. We are also creating a grow of diffraction experiments used to determine protein structures in contributed by the CSGID, SSGCID, JCSG, MCSG, SGC and of projects, as well as individual research laboratories. Currently indexed diffraction experiments: 2920 Read more	 program of the wrangling" data wing repository n the PDB,
	Q S	arch diffraction experiments	
	Search examples		
	Find a specific PDB ID: 4K6		
	Free format search: 'potential drug	arget'	
	Combining searches: drug AND c		+
	Specific beamline: beamline=21		
	Fuzzy search: authors ~ Shab	in Browse & search Statistics	Submit data
	Resolution limit (Angstroms): resolution	n<1.25	

×


Data collection strategy

Optimal data collection ?

Optimal data collection ?

Header – is CBF header a MAH ?

2015/May/06 10:30:40 # Pixel size 172e-6 m x 172e-6 m # Silicon sensor, thickness 0.001 m # Oscillation_axis omega # Excluded_pixels: badpix_mask.tif # Chi 0.0000 deg. # Angle_increment 0.1000 deg. # Polarization 0.99 # file comments # N_oscillations 2500 # Beam_xy (1223.03, 1256.56) pixels # Exposure_time 0.020000 s # Phi 0.0020 deg. # Energy_range (0, 0) eV # Start_angle 160.6000 deg. # Detector_distance 0.617619 m # Detector Voffset 0.0000 m # Alpha 0.0000 deg. # Flat field: (nil) # Threshold_setting 7619 eV # Exposure_period 0.020950 s # N_excluded_pixels: = 321 # Kappa 0.0020 deg. # Tau = 0 s

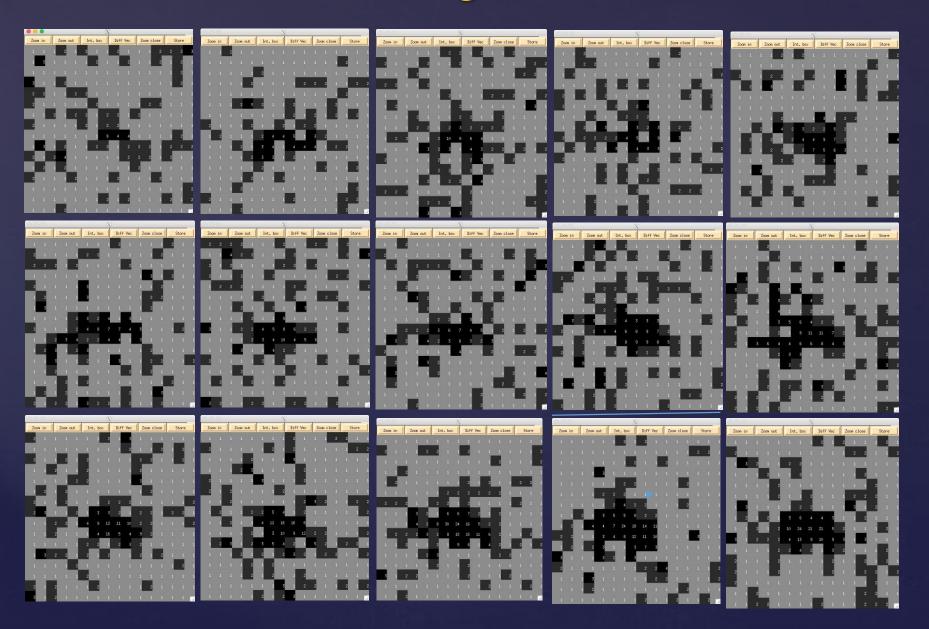
Do you like this image?

Do you like this image ?

How expensive is bright lens?

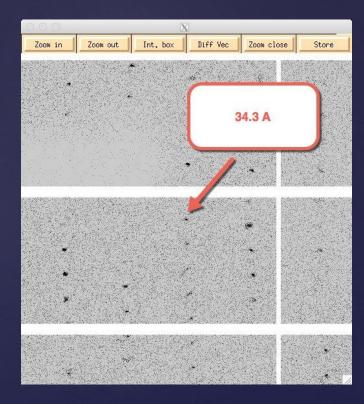
Canon EF 85mm f1.2L II USM Lens for Canon DSLR Cameras - Fixed by Canon

\$1,999.00 √*Prime* Get it by Monday, Aug 24 More Buying Choices \$1,999.00 new (22 offers) \$1,499.99 used (24 offers) Trade-in eligible for an Amazon gift card ☆☆☆☆☆☆ ▼ 159


Canon EF 85mm f/1.8 USM Medium Telephoto Lens for Canon SLR Cameras - Fixed by Canon

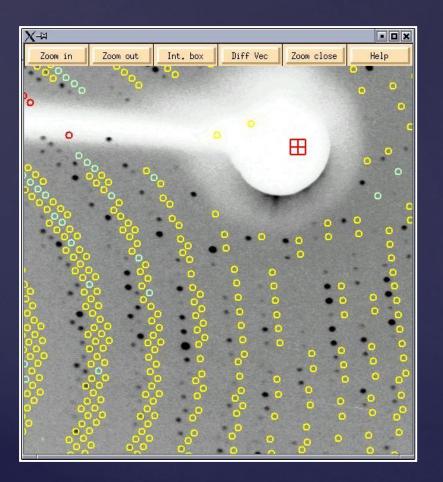
\$369.00 *Prime* Get it by Monday, Aug 24

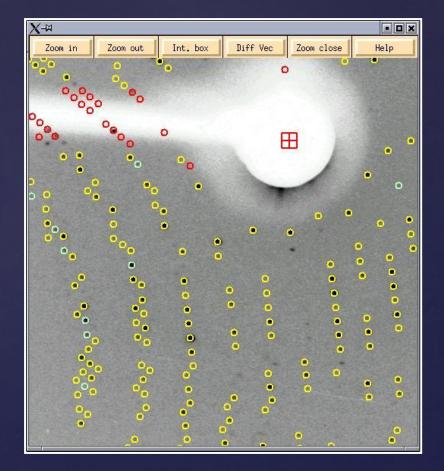
More Buying Choices \$369.00 new (27 offers) \$298.00 used (26 offers)


Trade-in eligible for an Amazon gift card

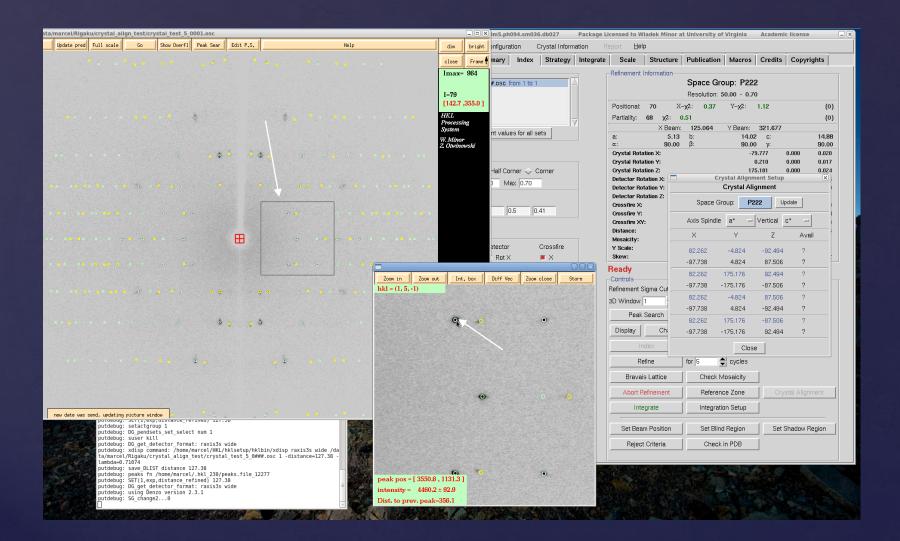
Thin slicing, 0.01s/frame

VS, S, W, VW

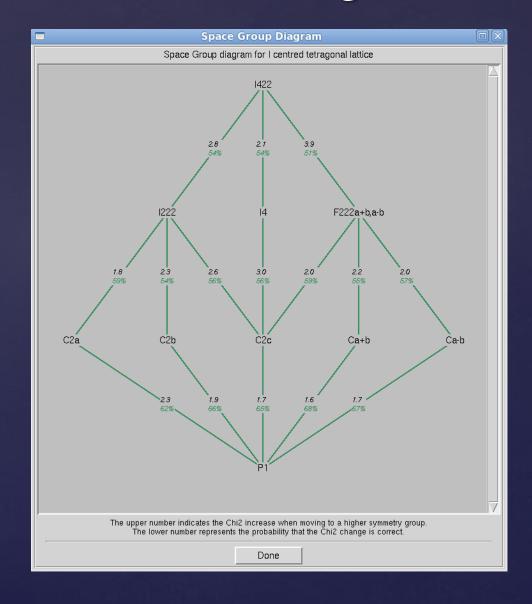

000		🔀 /User	s/wladek/Desktop/Za	k1/L242/Lo8242_2	2_00101.cbf			
Prof fit R	Zoom wind	Write/Print	A/D test	Floor Up	Floor Down	reverse	dim	' bright
color	Update pred	Full scale	60	Show Overf1	Peak Sear	Edit P.S.	close	Frame
Dead pixel	Save Dead pixel			Help			Imax=	
	-						d=2.75 I=1 [3.2 ,3	
		* 					HKL Processi System	
			a se				W. Minor Z. Otwino	r owski
				• ×				
							6	
<i>.</i>							4	
							3	
							1	

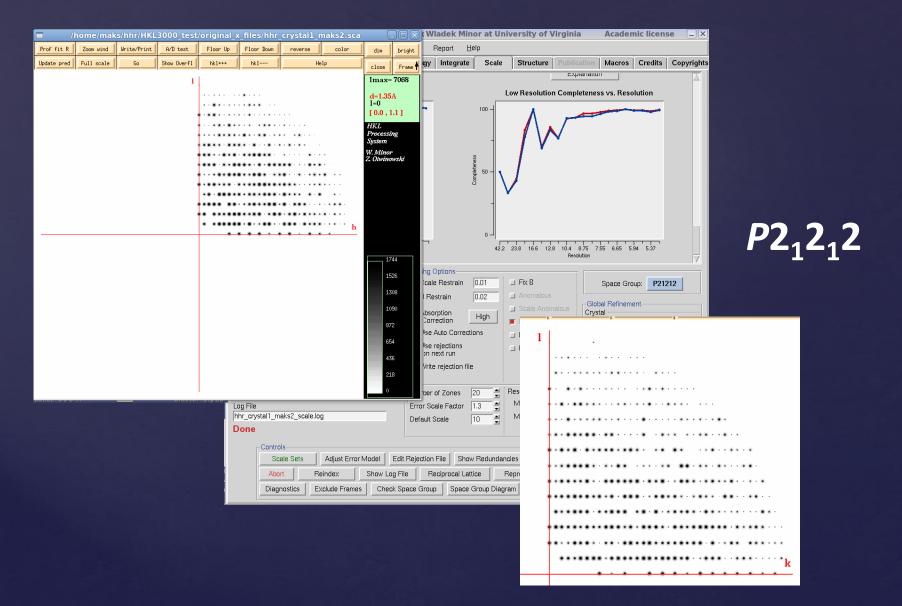


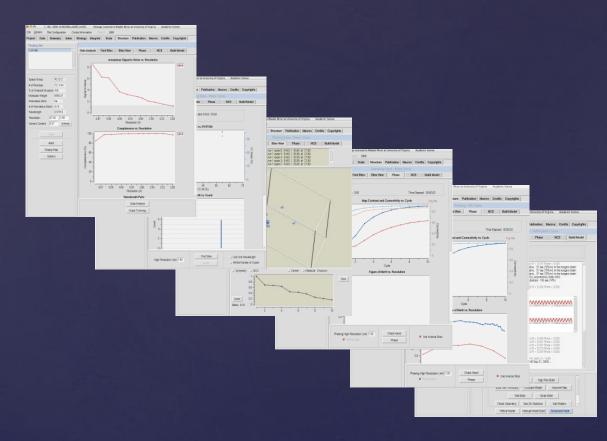
Xbeam, Ybeam

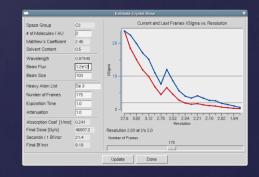

150.6 151.2

150.0 150.0

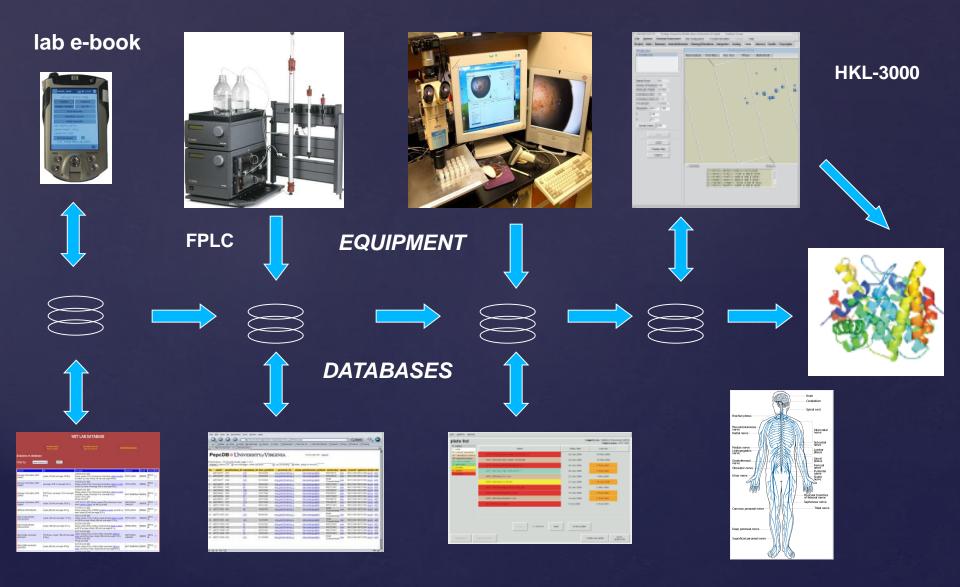



Crystal orientation

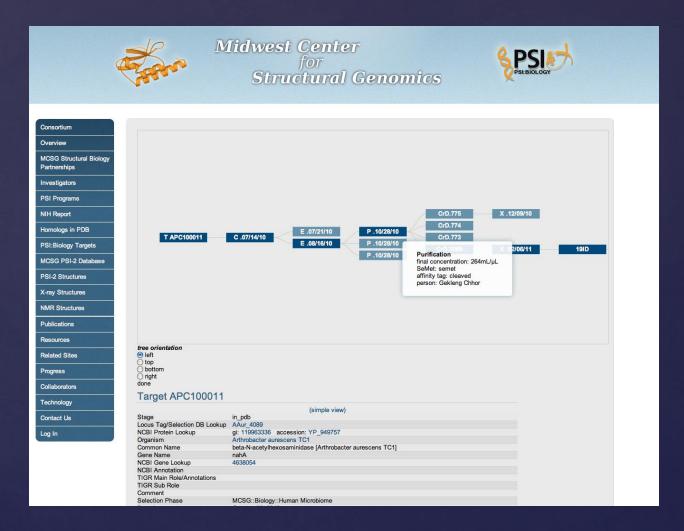

Space Group Determination Laue class diagram


Space Group Determination

Where are the real bottlenecks ?



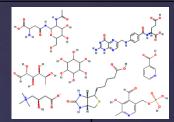
Database-controlled pipeline

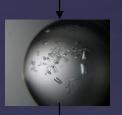

Statistics / Progress in Minor Lab LIMS by researcher

Last week (17 Apr 2015 - 24 Apr 2015)

Person	Clones	Exprs	Purifs	Macro preps	Plates	Drops	Crystals	Datasets processed	Structure refs	Kinetic assays	Thermal shift assays
Cooper, David	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>23</u>	<u>18</u>	<u>0</u>	0	0
<u>Handing, Katarzyna</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>51</u>	<u>53</u>	<u>13</u>	0	0
Hou, Jing	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>1</u>	30	<u>0</u>	<u>1</u>	<u>1</u>	0	0
Kowiel, Marcin	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>1</u>	<u>8</u>	<u>3</u>	0	0
<u>Shabalin, Ivan</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>125</u>	<u>14</u>	<u>9</u>	0	0
Shumilin, Igor	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>3</u>	<u>2</u>	0	0
Szlachta, Karol	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>34</u>	<u>20</u>	<u>3</u>	0	0

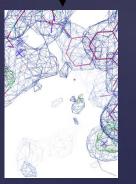
Last month (25 Mar 2015 - 24 Apr 2015)

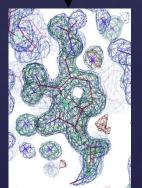

Target status and path to success



HKL-3000 at SBC

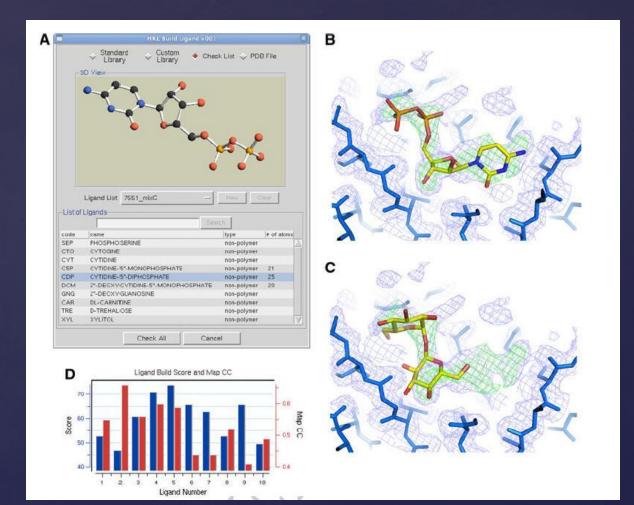
Crystallographic ligand screening

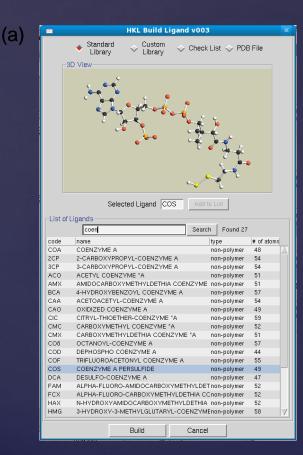


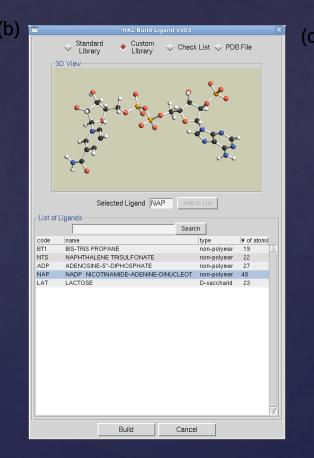


Cocktail solutions, each composed of 5-10 potential ligands

Soaking protein crystals with cocktail solutions

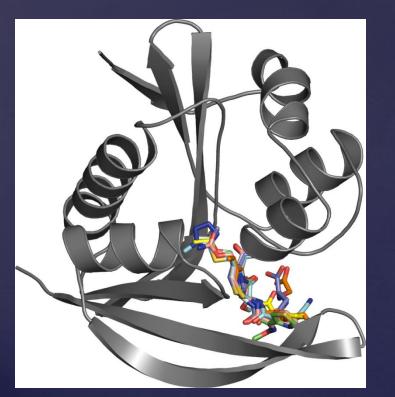


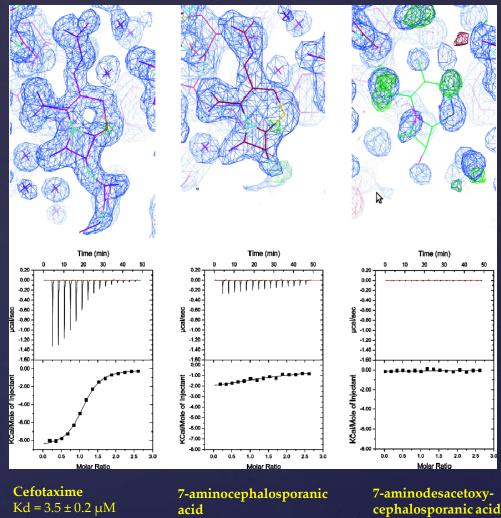

Identification of bound compound based on the structures of the cocktail components and the difference electron density map


Data collection, structure solution and identification of additional electron density

Ligand fitting

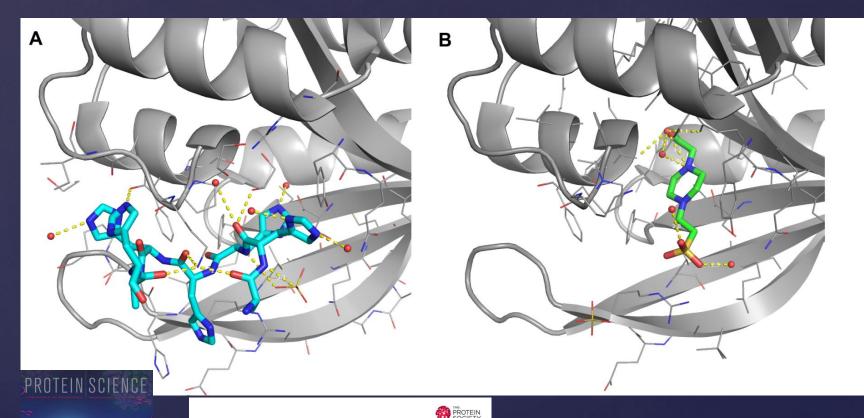
Automatic fitting of single ligand from particular library

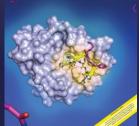




		НК	L Build L	igand v	003			×
	◇ Standar Library		Custom Library	🔶 Cł	neckList	> PDE	B File	
F ³	ID View							
					T.	•		
	Ligand List	5858_mix	:	-	New	с	lear	
				S	learch			
code ANP	name 5"-ADENYL				type non-po	lumor	# of ato 31	oms
ADP	ADENOSINE			41E	non-po		27	
CTP	CYTIDINE-5				non-po		29	
FAD	FLAVIN-AD				non-po		53	
IMP	INOSINE-5*-	MONOPH	OSPHATE		non-po	lymer	23	
		Chec	k All [Са	ncel			

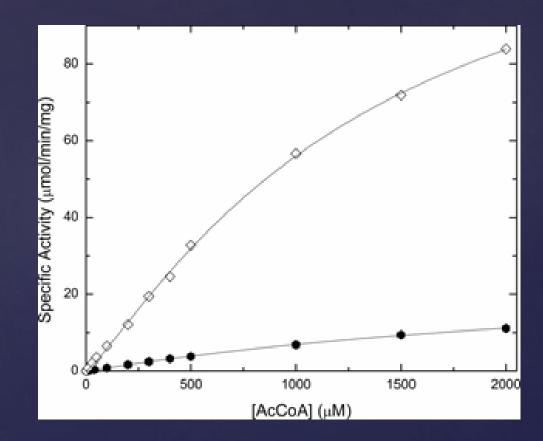
Ligands evaluation using crystallography and ITC


The search is extended to compounds showing similarity to the first hits.



Evaluation of identified ligands using ITC allows to determine the binding affinity of the ligands and to identify which compounds bind with the highest affinity.

Structures of PA4794 with His-tag (A) and HEPES (B) bound to substrate binding site



Double trouble – Buffer selection and His-tag presence may be responsible for nonreproducibility of biomedical

Karolina A. Majorek,^{1,2,3,4} Misty L. Kuhn,^{4,5} Maksymilian Chruszcz,^{1,3,4,6} Wayne F. Anderson,^{3,4,5} and Wladek Minor^{1,3,4}*

experiments

Effect of His-tag on SpeG

Protein purification and crystallization artifacts: The tale usually not told

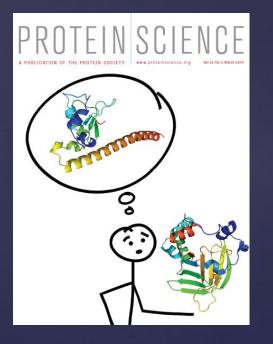
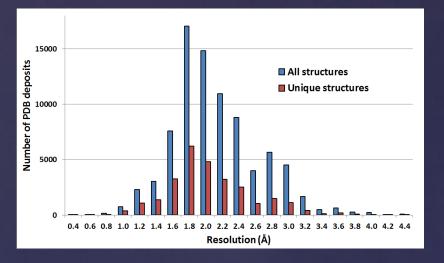
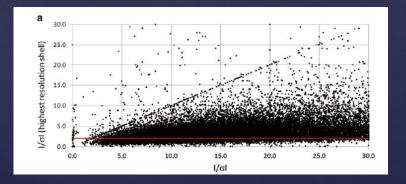
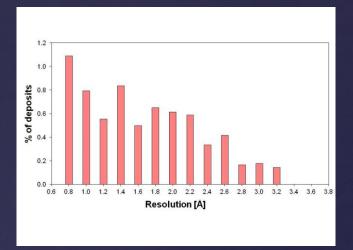
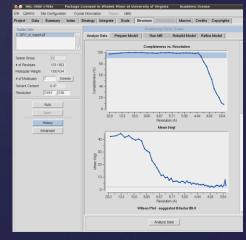



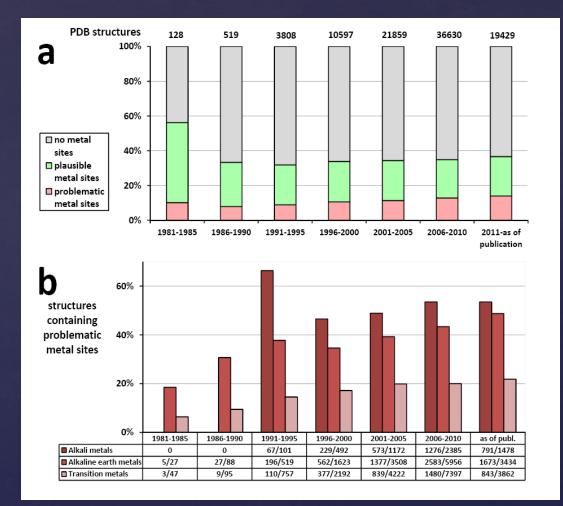
Table I. Known Structures of Proteins that Have Been Identified as Common Purification and Crystallization Artifacts


	Name of the protein	Molecular weight (kDa)	PDB ID
Affinity, solubility, anti-aggregation tags	Maltose-binding protein (MBP)	43	1LLS, 1MPB, 3PUW, 3SEU, 4KYC
	Glutathione-S-transferase (GST)	24	4ECB
	Thioredoxin (Trx)	11	1F6M, 2AJQ, 2H73, 4HU9, 4X43
	N-Utilization substance (NusA)	55	1U9L, ^a 1WCN, ^b 2KWP, ^c 4MTN ^d
	Small ubiquitin related modifier 1 (SUMO1)	12	2UYZ, 1Z5S, 4WJQ, 2IO2
	Haloalkane dehalogenase	33	4E46
E. coli native proteins	Metal-binding lipocalin (YodA)	25	10EJ, 4TNN
	Carbonic anhydrase (YadF)	25	2ESF
	Ferric uptake regulator (Fur)	16	2FU4
	cAMP-regulatory protein (CRP)	24	1CGP, 2CGP, 2GZW, 3FWE, 3HIF, 3N4M, 3QOP, 4FT8, 4HZF, 4I0A, 4I0B, 4N9H, 4N9I
	Glucosamine-6-phosphate synthase (GlmS)	67	4AMV, 1JXA, 300J, 2J6H
	Glycogen synthase (GlgA)	53	2QZS
	Component 1 of the 2-oxoglutarate dehydrogenase complex (ODO1)	105	2JGD
	Component E2 of dihydrolipoamide succinvltransferase (ODO2)	44	1C4T
	Formyl transferase (YfbG, AmA)	46	1U9J, 1YRW, 1Z7E, 2BLN, 4WKG
	Cu/Zn-superoxide dismutase (Cu/Zn-SODM)	16	1ESO
	Chloramphenicol-O-acetyl transferase (CAT)	26	1Q23
	Host factor-I protein (Hfq)	11	3VU3
Proteases	Tobacco etch virus (TEV)	28	1LVM
	Rhinovirus 3C protease	48	1CQQ
	SUMO protease C-terminal domain	26	2HL9
	Enterokinase	26	1EKB
	Trypsin	26	3UY9
	Chymotrypsin	26	1GGD
	Thrombin (active form)	36	3SQE, 1MH0, 4H6T
	Thermolysin	60	4D9W
	Proteinase K	40	3DVS
	Pepsin	41	5PEP
	Neutrophil elastase	29	5ABW
	LysN Peptidyl-Lys	44	1GE7
	metalloendopeptidase		
	Lysyl endopeptidase	28	4NSY
	Factor Xa	55	1KIG
Exogenous proteins	Lysozyme	16	4TWS, 4PRQ, 1AKI
	DNase protein	31	2A40

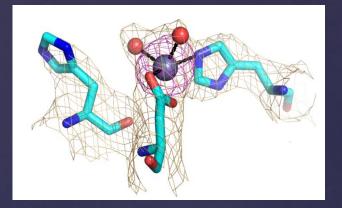
Niedzialkowska et al, Protein Sci. 2016 Mar;25(3):720-33

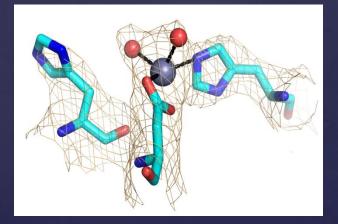

Resolution and ligands in PDB


Cooper et al, Expert Opinion on Drug Discovery (2011) 6: 771-782


Domagalski et al. Methods in Molecular Biology (2014) 1091: 297-314

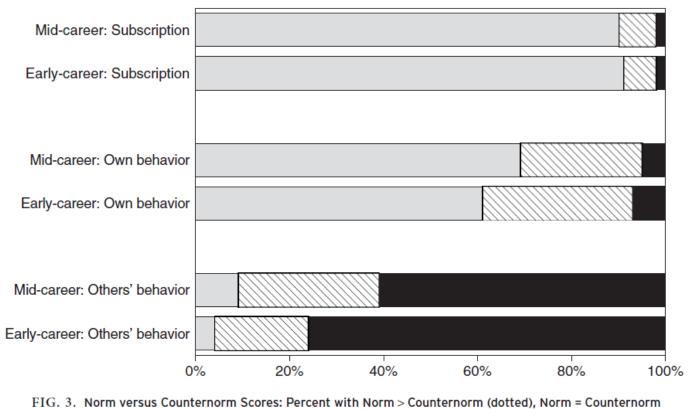
Cooper et al, Expert Opinion on Drug Discovery (2011) 6: 771-782


Metals in PDB


Metal binding site validation: *CheckMyMetal* server

ID	Res	Atom	Valence	BV symme	try Geometry	RMSD geometry angles	Missing	/ertices	Bidentate	CBVS	Alternative metal
400:A	MG	MG	2.1	0.111	Octahedral	5.36	0		0	4.41	
400:B	_MG	MG	2.06	0.079	Octahedral	4.13	0		0	4.32	
	M	ouse cl	ick action:		Basic	controls:	Use	the butt	ons below t	o contro	I the view
Non	e ©Ce	nter OD)istance ⊙L	abel L	eft-Click to rotate	H	Residue Na	ime:		●On	Off
Zoom	In Zoon	n Out Ce	enter		Shift-Left-Click up		Metal Distar	nces:		On	◎Off
				F	Right-Click for Jm	ol's context menu	Protein Car	toon:		On	●Off
							Spin:			On	●Off
							Antialiasing	:		On	Off
							Legend			lanation	
		7		.43:	SER		Valence	Summa binding		valence v	alues for an ion
							BV	Summa	tion of bond	valence v	ectors, weighted
		5		1			symmety				ase when the
					A670:HOH				ation sphere eteness.	is not syn	nmetrical due to
				∖ T		A500:ADP	Geometry		ling site geor BORHOOD a		calculated by the
				. \			RMSD				geometry angles
		A	69:HOF				geometry	•		ared to id	deal geometry, in
				-	37:HOH		angles	degrees			second and the state of
					57.000		Missing vertices		of sites that		signed geometry
							Bidentate		of residues		
							Didentate		on instead of		
							CBVS		Bond Valen	ce Sum, i	used for
					A668:HOH			alternati	ve metal(s) p	rediction	
								method	`	ify metal stallogr. [oond-valence atoms in protein) Biol.
									• • •	-	
							Alternative		alternative m		
						Jmol	metal				cy, assuming ly determined

The way to prove presence of metal


Metal binding site A 9668eV

Metal binding site A 9618eV

Data collected below and above zinc absorption edge - APS 19BM

Dissonance in Science

(striped), Norm < Counternorm (solid).

Acknowledgments

Wladek Minor

- Marcin Cymborowski
- Maks Chruszcz
- Matt Zimmerman
- Heping Zheng
- Ivan Shabalin
- Ewa Niedzialkowska
- Karolina Majorek
- Katherine Handing

Zbyszek Otwinowski

- Dominika Borek

Andrzej Joachimiak MCSG and SBC staff

Wayne Anderson CSGID staff Steve Almo NYSGRC Staff

Zbyszek Dauter Mariusz Jaskolski Alexander Wlodawer

Garib Murshudow Paul Emsley Tom Terwilliger George Sheldrick

Grants:

NIH GM53163, GM62414, GM74942 GM117080, HG008424, GM117325 HHSN272200700058C,HHSN272201200026C HKL Research. Inc.