

Model-building using cryo-EM and crystallographic maps:

Methods and techniques in integrated structural biology: Beyond Black Boxes Strasbourg, October 7, 2016

Tom Terwilliger, Li-Wei Hung

Los Alamos National Laboratory

Pavel Afonine, Oleg Sobolev, Paul Adams

Lawrence Berkeley National Laboratory

Outline

Are X-ray and cryo-EM maps the same?

Optimal sharpening of a map

Finding the unique part of a cryo-EM map

Model improvement by iterative secondary-structure assignment and real-space refinement

Automated interpretation of cryo-EM maps

X-ray vs cryo-EM

Beta galactosidase at 2.2 Å

(which is the cryo-EM map?)

X-ray vs cryo-EM

Beta galactosidase at 2.2 Å

(which is the cryo-EM map?)

X-ray vs cryo-EM

Beta galactosidase at 2.2 Å

X-ray (PDB 3i3b)

Cryo-EM (PDB 5a1a)

X-ray and cryo-EM maps can be very similar...

... but have different strengths

X-ray maps be improved by density modification cryoEM maps are what you get

Cryo-EM maps may have more accurate lowresolution information

More accurate low-resolution information in cryo-EM

X-rayCryo-EM(Blurring makes it worse)(Blurring makes it better)

Why model-building of large complexes is challenging

Resolution may be low

May be many copies of each chain and high symmetry

May contain both RNA/DNA and protein

Additional challenges for cryo-EM maps

What is the magnification of the map? (as much as 10% uncertainty in scale factor)

What is the optimal sharpening of the map? (X-ray maps too)

What is the region containing the molecule?

Anthrax toxin protective antigen pore at 2.9 Å

7-fold symmetry

Jiang et al., 2015

Automatic map sharpening

B_iso =-100 (density broken)

B_iso =60 (clear density) B_iso =150 (blurred density)

Sharpening based on contiguous regions and surface area

Effective Wilson B-value

Adjusted surface area: surface area – weight * number of regions

Effective Wilson B-value

Adjusted surface area can be used to refine resolution-dependent normalization of map coefficients

Resolution (Å)

6

3

- Amplitudes normalized (B-iso=0)
- 3-parameter resolutiondependent weights applied to normalized amplitudes
- Log(<F>) varies linearly with sin²θ/λ² in 3 ranges of resolution

Map optimization: Adjusted surface area vs original

Map optimization: Adjusted surface area vs original

- 7 cryo-EM maps
- 2.2-4.5 Å
- Total residues built correctly

Automatic map segmentation

Use symmetry of the map

Identify contiguous regions representing asymmetric unit of the map

Choose symmetry-copies that make compact molecule

Anthrax toxin protective antigen pore at 2.9 Å

7-fold symmetry

Jiang et al., 2015

Anthrax toxin protective antigen pore at 2.9 Å

7-fold symmetry

Jiang et al., 2015

Automated interpretation of Low-resolution maps

- Cut out asymmetric unit of the map
- Trace chain and build model
- Idealize secondary structure and refine
- Assemble and refine (protein/RNA/DNA)
- Apply molecular symmetry and re-refine

Low-resolution backbone chain-tracing for proteins

- Variable map sharpening
- Trace protein main chain
- Identify direction of main chain by fit to density

Model improvement by iterative secondarystructure assignment and real-space refinement

- Find the secondary structure (helices/strands)
- Identify idealized atom-atom distances
- Refine including the secondary-structure restraints
- Score based on map correlation and number of suitable H-bonds in models

Chain tracings of cryo-EM map (Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b)

Chain tracings of cryo-EM map (Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b)

Which direction does the chain go?

Identifying chain direction by map correlation

Optimizing model

- Refine and rebuild model (simulated annealing, rebuilding and combination of best parts of each model)
- Replace segments with idealized structure
- Identify hydrogen-bonding (β-sheets, α-helices) and use them as restraints in real-space refinement

Simulated annealing refinement and recombination (Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b)

Rebuilding

(Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b)

Idealization and refinement (Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b)

Cryo-EM map from yeast mitochondrial ribosome (chain I of large subunit, 3.2 Å, Amunts et al., 2014)

Autobuilt model (pink) Deposited model (green) (main-chain and C^{β} atoms)

Automated interpretation of cryo-EM maps

- Cut out molecule
- Identify optimal
- Try building protein/RNA/DNA (whatever may be there)
- Choose segment type by map correlation
- Assemble and refine
- Apply molecular symmetry and refine again

70S ribosome at 2.9 Å RNA/Protein building into segmented map

Segmented density

70S ribosome at 2.9 Å RNA/Protein building into segmented map

...as protein

70S ribosome at 2.9 Å RNA/Protein building into segmented map

...as protein

...as RNA

Gammasecretase at 4.5 Å (emd_2677)

Gammasecretase at 4.5 Å

(autobuilt model; emd_2677)

..and another Gammasecretase structure at 3.4 Å

(autobuilt model; emd_3061)

Proteasome at 2.8 Å

(autobuilt model; emd_6287)

Proteasome at 2.8 Å

(autobuilt model; emd_6287)

Betagalactosidase at 2.2 Å

(autobuilt model; emd_2984) 70S *E. coli* ribosome (5afi, 3.2 Å)

Total residues autobuilt correctly:

RNA: 2588 of 4763 (rmsd 0.63 Å) Protein: 3212 of 6323 (rmsd 0.76Å)

30S Ribosome (X-rray map autobuilt 1j5e, 2.9 Å)

30S Ribosome (autobuilt 1j5e, 2.9 Å)

autobuilt

1j5e

Perspectives...

- Local automatic map optimization could improve model-building
- Incorporation of validation (idealization) at modelbuilding stage improves low-resolution models
- Approach may be enhanced by combining structuremodeling tools (Rosetta) with Phenix model-building
- Distance restraints from residue co-evolution could increase information about model
- Secondary structure prediction could be used in sequence assignment
- Partial model information from PDB could be used

The Phenix Project

